Tail Distortion Risk Measure for Portfolio with Multivariate Regularly Variation

被引:0
|
作者
Yu Chen
Jiayi Wang
Weiping Zhang
机构
[1] University of Science and Technology of China,Department of Statistics and Finance
关键词
Background risk model; Tail distortion risk measure; Multivariate regular variation; 62E20; 62G70;
D O I
暂无
中图分类号
学科分类号
摘要
For the multiplicative background risk model, a distortion-type risk measure is used to measure the tail risk of the portfolio under a scenario probability measure with multivariate regular variation. In this paper, we investigate the tail asymptotics of the portfolio loss ∑i=1dRiS\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum _{i=1}^{d}R_iS$$\end{document}, where the stand-alone risk vector R=(R1,…,Rd)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {R}}=(R_1,\ldots ,R_d)$$\end{document} follows a multivariate regular variation and is independent of the background risk factor S. An explicit asymptotic formula is established for the tail distortion risk measure, and an example is given to illustrate our obtained results.
引用
收藏
页码:263 / 285
页数:22
相关论文
共 50 条
  • [31] Coherent measure of portfolio risk
    Ardakani, Omid M.
    [J]. FINANCE RESEARCH LETTERS, 2023, 57
  • [32] Estimating portfolio risk for tail risk protection strategies
    Happersberger, David
    Lohre, Harald
    Nolte, Ingmar
    [J]. EUROPEAN FINANCIAL MANAGEMENT, 2020, 26 (04) : 1107 - 1146
  • [33] First- and Second-order Asymptotics for the Tail Distortion Risk Measure of Extreme Risks
    Yang, Fan
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2015, 44 (03) : 520 - 532
  • [34] Estimation of the tail exponent of multivariate regular variation
    Kim, Moosup
    Lee, Sangyeol
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2017, 69 (05) : 945 - 968
  • [35] Estimation of the tail exponent of multivariate regular variation
    Moosup Kim
    Sangyeol Lee
    [J]. Annals of the Institute of Statistical Mathematics, 2017, 69 : 945 - 968
  • [36] Distributional Bounds for Portfolio Risk with Tail Dependence
    So, Kunio
    Imai, Junichi
    [J]. METHODOLOGY AND COMPUTING IN APPLIED PROBABILITY, 2015, 17 (03) : 795 - 816
  • [37] Asymptotic risk decomposition for regularly varying distributions with tail dependence
    Jaune, Egle
    Siaulys, Jonas
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2022, 427
  • [38] Distributional Bounds for Portfolio Risk with Tail Dependence
    Kunio So
    Junichi Imai
    [J]. Methodology and Computing in Applied Probability, 2015, 17 : 795 - 816
  • [39] Portfolio rebalancing with VaR as risk measure
    Xu, Chunhui
    Kijima, Kyoichi
    Wang, Jie
    Inoue, Akiya
    [J]. INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2008, 4 (09): : 2147 - 2159
  • [40] An examination of the tail contribution to distortion risk measures
    Santolino, Miguel
    Belles-Sampera, Jaume
    Sarabia, Jose
    Guillen, Montserrat
    [J]. JOURNAL OF RISK, 2021, 23 (06): : 95 - 119