On the regularity criterion of weak solutions for the 3D MHD equations

被引:0
|
作者
Sadek Gala
Maria Alessandra Ragusa
机构
[1] University of Mostaganem,Department of Mathematics
[2] Universit à di Catania,Dipartimento di Matematica e Informatica
[3] RUDN University,undefined
关键词
MHD equations; Blow-up criterion; Smooth solutions; Regularity criterion; Besov space; 5Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
The paper deals with the 3D incompressible MHD equations and aims at improving a regularity criterion in terms of the horizontal gradient of velocity and magnetic field. It is proved that the weak solution (u, b) becomes regular provided that ∇hu,∇hb∈L830,T;B·∞,∞-1R3.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \left( \nabla _{h}u,\nabla _{h}b\right) \in L^{\frac{8}{3}}\left( 0,T;\overset{\cdot }{B}_{\infty ,\infty }^{-1}\left( \mathbb {R}^{3}\right) \right) . \end{aligned}$$\end{document} The result is an extension of regularity criterion for 3D Navier–Stokes equations in Besov space due to Fang and Qian (Commun Pure Appl Anal 13:585–603, 2014) [see also (Ni et al. in J Math Anal Appl 396:108–118, 2012)].
引用
收藏
相关论文
共 50 条