Automorphism group of the complete transposition graph

被引:0
|
作者
Ashwin Ganesan
机构
[1] Vidyalankar Institute of Technology,Department of Electronics and Telecommunication Engineering
来源
关键词
Complete transposition graph; Automorphisms of graphs; Normal Cayley graphs;
D O I
暂无
中图分类号
学科分类号
摘要
The complete transposition graph is defined to be the graph whose vertices are the elements of the symmetric group Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}, and two vertices α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta $$\end{document} are adjacent in this graph iff there is some transposition (i, j) such that α=(i,j)β\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha =(i,j) \beta $$\end{document}. Thus, the complete transposition graph is the Cayley graph Cay(Sn,S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\mathrm {Cay}}\nolimits (S_n,S)$$\end{document} of the symmetric group generated by the set S of all transpositions. An open problem in the literature is to determine which Cayley graphs are normal. It was shown recently that the Cayley graph generated by four cyclically adjacent transpositions is non-normal. In the present paper, it is proved that the complete transposition graph is not a normal Cayley graph, for all n≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \ge 3$$\end{document}. Furthermore, the automorphism group of the complete transposition graph is shown to equal Aut(Cay(Sn,S))=(R(Sn)⋊Inn(Sn))⋊Z2,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \mathop {\mathrm {Aut}}\nolimits (\mathop {\mathrm {Cay}}\nolimits (S_n,S)) = (R(S_n) \rtimes \mathop {\mathrm {Inn}}\nolimits (S_n)) \rtimes \mathbb {Z}_2, \end{aligned}$$\end{document}where R(Sn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R(S_n)$$\end{document} is the right regular representation of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}, Inn(Sn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathop {\mathrm {Inn}}\nolimits (S_n)$$\end{document} is the group of inner automorphisms of Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document}, and Z2=⟨h⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2 = \langle h \rangle $$\end{document}, where h is the map α↦α-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \mapsto \alpha ^{-1}$$\end{document}.
引用
收藏
页码:793 / 801
页数:8
相关论文
共 50 条
  • [21] THE AUTOMORPHISM GROUP OF A GRAPH PRODUCT WITH NO SIL
    Charney, Ruth
    Ruane, Kim
    Stambaugh, Nathaniel
    Vijayan, Anna
    ILLINOIS JOURNAL OF MATHEMATICS, 2010, 54 (01) : 249 - 262
  • [22] The automorphism group of the graph of an R class
    Stephen, JB
    SEMIGROUP FORUM, 1996, 53 (03) : 387 - 389
  • [23] A NOTE ON THE AUTOMORPHISM GROUP OF THE HAMMING GRAPH
    Mirafzal, Seyed Morteza
    Ziaee, Meysam
    TRANSACTIONS ON COMBINATORICS, 2021, 10 (02) : 129 - 136
  • [24] Automorphism Group of the Varietal Hypercube Graph
    Wang, Yi
    Feng, Yan-Quan
    Zhou, Jin-Xin
    GRAPHS AND COMBINATORICS, 2017, 33 (05) : 1131 - 1137
  • [25] The automorphism group of the bipartite Kneser graph
    S Morteza Mirafzal
    Proceedings - Mathematical Sciences, 2019, 129
  • [26] Automorphism Group of the Varietal Hypercube Graph
    Yi Wang
    Yan-Quan Feng
    Jin-Xin Zhou
    Graphs and Combinatorics, 2017, 33 : 1131 - 1137
  • [27] The automorphism group of a graph product of groups
    Pettet, MR
    COMMUNICATIONS IN ALGEBRA, 1999, 27 (10) : 4691 - 4708
  • [28] Upper bounds on the automorphism group of a graph
    Krasikov, I
    Lev, A
    Thatte, BD
    DISCRETE MATHEMATICS, 2002, 256 (1-2) : 489 - 493
  • [29] On the automorphism group of the fundamental group of a graph of polycyclic groups
    Raptis, E
    Varsos, D
    ALGEBRA COLLOQUIUM, 1997, 4 (03) : 241 - 248
  • [30] Automorphism group of 2-token graph of the Hamming graph
    Zhang, Ju
    Zhou, Jin-Xin
    Lee, Jaeun
    Li, Yan-Tao
    Xie, Jin-Hua
    DISCRETE MATHEMATICS, 2024, 347 (01)