An Algorithm for Constructing Some Maximal Arcs in PG(2, q2)

被引:0
|
作者
Angela Aguglia
Luca Giuzzi
机构
[1] Politecnico di Bari,Dipartimento di Matematica
来源
Results in Mathematics | 2008年 / 52卷
关键词
Maximal arcs; spreads; algebraic curves; 05B25; 51E21;
D O I
暂无
中图分类号
学科分类号
摘要
In 1974, J. Thas constructed a new class of maximal arcs for the Desarguesian plane of order q2. The construction relied upon the existence of a regular spread of tangent lines to an ovoid in PG(3, q) and, in particular, it does apply to the Suzuki–Tits ovoid. In this paper, we describe an algorithm for obtaining a possible representation of such arcs in PG(2, q2).
引用
收藏
页码:17 / 33
页数:16
相关论文
共 50 条
  • [21] On (q2+q+2,q+2)-arcs in the Projective Plane PG(2,q)
    Ball, S
    Hill, R
    Landjev, I
    Ward, H
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2001, 24 (02) : 205 - 224
  • [22] Mixed partitions of PG(3, q2)
    Mellinger, KE
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2004, 10 (04) : 626 - 635
  • [23] On unitals in PG(2, q2) stabilized by a homology group
    Donati, Giorgio
    Durante, Nicola
    Siciliano, Alessandro
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2014, 72 (01) : 135 - 139
  • [24] Embedding of classical polar unitals in PG(2, q2)
    Korchmaros, Gabor
    Siciliano, Alessandro
    Szonyi, Tamas
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2018, 153 : 67 - 75
  • [25] RELATIONS BETWEEN 2 BAER SUBPLANES OF PG(2,Q2)
    FREEMAN, JW
    [J]. NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 22 (01): : A200 - A200
  • [26] Intersections of Nonclassical Unitals and Conics in PG(2, q2)
    Aguglia, Angela
    Giordano, Vincenzo
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2010, 17 (01):
  • [27] The sizes of the intersections of two unitals in PG(2, q2)
    Chandler, David B.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2014, 25 : 255 - 269
  • [28] On the intersection pattern of a unital and an oval in PG(2, q2)
    Donati, G.
    Durante, N.
    Korchmaros, G.
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2009, 15 (06) : 785 - 795
  • [29] On maximal partial spreads of H(2n+1, q2)
    Luyckx, D.
    [J]. DISCRETE MATHEMATICS, 2008, 308 (2-3) : 375 - 379
  • [30] On (q2
    Napolitano, Vito
    [J]. INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2022, 15 (01): : 79 - 82