Component exergy analysis of solar powered transcritical CO2 rankine cycle system

被引:0
|
作者
Xiaojuan Li
Xinrong Zhang
机构
[1] Peking University,Department of Energy and Resources Engineering, College of Engineering
[2] Doshisha University,Department of Mechanical Engineering
来源
关键词
Transcritical CO; Rankine cycle; Solar energy; Solar collector; Component exergy analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, exergy analysis method is developed to assess a Rankine cycle system, by using supercritical CO2 as working fluid and powered by solar energy. The proposed system consists of evacuated solar collectors, throttling valve, high-temperature heat exchanger, low-temperature heat exchanger, and feed pump. The system is designed for utilize evacuated solar collectors to convert solar energy into mechanical energy and hence electricity. In order to investigate and estimate exergy performance of this system, the energy, entropy, exergy balances are developed for the components. The exergy destructions and exergy efficiency values of the system components are also determined. The results indicate that solar collector and high temperature heat exchanger which have low exergy efficiencies contribute the largest share to system irreversibility and should be the optimization design focus to improve system exergy effectiveness. Further, exergy analysis is a useful tool in this regard as it permits the performance of each process to be assessed and losses to be quantified. Exergy analysis results can be used in design, optimization, and improvement efforts.
引用
收藏
相关论文
共 50 条
  • [31] Thermodynamic analysis of CO2 transcritical cycle
    Ma, Yitai
    Yang, Zhao
    Lu, Canren
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 19 (06): : 665 - 668
  • [32] Thermal assessment and optimization of process fluids in transcritical organic and transcritical CO2 Rankine cycle for waste energy recuperating system
    Shan, A. N. M. Nihaj Uddin
    Mostafa, Md. Zayed
    Hossain, Arman
    Sakib, Mohmmad. Shadman
    Ehsan, M. Monjurul
    ENERGY CONVERSION AND MANAGEMENT-X, 2022, 15
  • [33] Energy, exergy, economic and exergoenvironmental analyses of transcritical CO2 cycle powered by single flash geothermal power plant
    Assad, Mamdouh El Haj
    Aryanfar, Yashar
    Javaherian, Amirreza
    Khosravi, Ali
    Aghaei, Karim
    Hosseinzadeh, Siamak
    Pabon, Juan
    Mahmoudi, S. M. S.
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2021, 16 (04) : 1504 - 1518
  • [34] Exergy analysis of a solar combined cycle: organic Rankine cycle and absorption cooling system
    Grosu, Lavinia
    Marin, Andreea
    Dobrovicescu, Alexandru
    Queiros-Conde, Diogo
    INTERNATIONAL JOURNAL OF ENERGY AND ENVIRONMENTAL ENGINEERING, 2016, 7 (04) : 449 - 459
  • [35] Comparison of CO2 and steam in transcritical Rankine cycles for concentrated solar power
    Garg, P.
    Srinivasan, K.
    Dutta, P.
    Kumar, P.
    PROCEEDINGS OF THE SOLARPACES 2013 INTERNATIONAL CONFERENCE, 2014, 49 : 1138 - 1146
  • [36] Exergy analysis of a hydrogen and water production process by a solar-driven transcritical CO2 power cycle with Stirling engine
    Naseri, Ali
    Bidi, Mokhtar
    Ahmadi, Mohammad H.
    Saidur, R.
    JOURNAL OF CLEANER PRODUCTION, 2017, 158 : 165 - 181
  • [37] Concentrating solar powered transcritical co2 power generation cycle for the union territory of ladakh, india
    Hoque S.J.
    Kumar P.
    Dutta P.
    International Journal of Energy for a Clean Environment, 2023, 24 (04) : 17 - 40
  • [38] How to select regenerative configurations of CO2 transcritical Rankine cycle based on the temperature matching analysis
    Tian, Hua
    Xu, Zhiqiang
    Liu, Peng
    Wang, Xuan
    Shu, Gequn
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (04) : 2560 - 2579
  • [39] Off-design performance analysis of a transcritical CO2 Rankine cycle with LNG as cold source
    Wang, Jianyong
    Wang, Jiangfeng
    Dai, Yiping
    Zhao, Pan
    INTERNATIONAL JOURNAL OF GREEN ENERGY, 2017, 14 (09) : 774 - 783
  • [40] Thermodynamic, Economic Analysis, and Multiobjective Optimization of a Novel Transcritical CO2 Rankine Cycle with a Vortex Tube
    Wang, Jiangfeng
    Liao, Guanglin
    Zuo, Qiyao
    Guo, Yumin
    Zhao, Pan
    Dai, Yiping
    JOURNAL OF ENERGY ENGINEERING, 2022, 148 (01)