Component exergy analysis of solar powered transcritical CO2 rankine cycle system

被引:0
|
作者
Xiaojuan Li
Xinrong Zhang
机构
[1] Peking University,Department of Energy and Resources Engineering, College of Engineering
[2] Doshisha University,Department of Mechanical Engineering
来源
关键词
Transcritical CO; Rankine cycle; Solar energy; Solar collector; Component exergy analysis;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, exergy analysis method is developed to assess a Rankine cycle system, by using supercritical CO2 as working fluid and powered by solar energy. The proposed system consists of evacuated solar collectors, throttling valve, high-temperature heat exchanger, low-temperature heat exchanger, and feed pump. The system is designed for utilize evacuated solar collectors to convert solar energy into mechanical energy and hence electricity. In order to investigate and estimate exergy performance of this system, the energy, entropy, exergy balances are developed for the components. The exergy destructions and exergy efficiency values of the system components are also determined. The results indicate that solar collector and high temperature heat exchanger which have low exergy efficiencies contribute the largest share to system irreversibility and should be the optimization design focus to improve system exergy effectiveness. Further, exergy analysis is a useful tool in this regard as it permits the performance of each process to be assessed and losses to be quantified. Exergy analysis results can be used in design, optimization, and improvement efforts.
引用
收藏
相关论文
共 50 条
  • [1] Component Exergy Analysis of Solar Powered Transcritical CO2 Rankine Cycle System
    Li, Xiaojuan
    Zhang, Xinrong
    JOURNAL OF THERMAL SCIENCE, 2011, 20 (03) : 195 - 200
  • [2] Component Exergy Analysis of Solar Powered Transcritical CO2 Rankine Cycle System
    Xiaojuan Li1 and Xinrong Zhang1
    Journal of Thermal Science, 2011, 20 (03) : 195 - 200
  • [3] Energy and exergy performance investigation of transcritical CO2-based Rankine cycle powered by solar energy
    XinRong Zhang
    XiaoJuan Li
    Science China Technological Sciences, 2012, 55 : 1427 - 1436
  • [4] Energy and exergy performance investigation of transcritical CO2-based Rankine cycle powered by solar energy
    Zhang XinRong
    Li XiaoJuan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2012, 55 (05) : 1427 - 1436
  • [5] Energy and exergy performance investigation of transcritical CO-based Rankine cycle powered by solar energy
    ZHANG XinRong LI XiaoJuan Department of Energy and Resources Engineering College of Engineering Peking University Beijing China Energy Conversion Research Center Department of Mechanical Engineering Doshisha University Kyoto Japan
    Science China(Technological Sciences), 2012, (05) : 1427 - 1436
  • [6] Preliminary investigation of a transcritical CO2 heat pump driven by a solar-powered CO2 Rankine cycle
    Li, Xiao-Juan
    Zhang, Xin-Rong
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2013, 37 (11) : 1361 - 1371
  • [7] Exergy analysis of development on supercritical CO2 solar Rankine cycle system with thermally driven pump
    Pumaneratkul, Chayadit
    Horino, Takashi
    Yamasaki, Haruhiko
    Yamaguchi, Hiroshi
    COGENT ENGINEERING, 2018, 5 (01): : 1 - 16
  • [8] Advanced exergy analysis of an integrated energy storage system based on transcritical CO2 energy storage and Organic Rankine Cycle
    Zhang, Yuan
    Liang, Tianyang
    Yang, Chao
    Zhang, Xuelai
    Yang, Ke
    ENERGY CONVERSION AND MANAGEMENT, 2020, 216
  • [9] Performance Analysis of Coupled System of CO2 Transcritical Heat Pump and Rankine Cycle
    Wang, Hongli
    Tian, Jingrui
    Ma, Yitai
    Hou, Xiujuan
    MATERIALS PROCESSING TECHNOLOGY, PTS 1-4, 2011, 291-294 : 1860 - +
  • [10] Performance Analysis and Comprehensive Evaluation of Solar Organic Rankine Cycle Combined with Transcritical CO2 Refrigeration Cycle
    Zhang, Na
    Xu, Po
    Wang, Yiming
    Tong, Wencai
    Yang, Zhao
    ENERGIES, 2023, 16 (14)