Conditional and Hidden Infinite-Dimensional Symmetries of Wave Equations

被引:0
|
作者
I. Yehorchenko
A. Vorobyova
机构
[1] National Academy of Sciences of Ukraine,Institute of Mathematics
[2] P. Mohyla Black Sea National University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We consider conditional and hidden symmetries of multidimensional wave equations generated by additional conditions. An additional condition corresponding to the dilation operator generates an infinite-dimensional symmetry for the wave equation.
引用
收藏
页码:378 / 384
页数:6
相关论文
共 50 条
  • [31] Parabolic equations for measures on infinite-dimensional spaces
    V. I. Bogachev
    G. Da Prato
    M. Röckner
    [J]. Doklady Mathematics, 2008, 78 : 544 - 549
  • [32] Notes on infinite-dimensional nonlinear parabolic equations
    M. N. Feller
    [J]. Ukrainian Mathematical Journal, 2000, 52 (5) : 789 - 802
  • [33] EQUATIONS WITH INFINITE-DIMENSIONAL PSEUDODIFFERENTIAL-OPERATORS
    KHRENNIKOV, AI
    [J]. DOKLADY AKADEMII NAUK SSSR, 1982, 267 (06): : 1313 - 1318
  • [34] Infinite-Dimensional Stochastic Differential Equations with Symmetry
    Osada, Hirofumi
    [J]. STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS AND RELATED FIELDS: IN HONOR OF MICHAEL ROCKNER, SPDERF, 2018, 229 : 549 - 559
  • [35] Parabolic equations for measures on infinite-dimensional spaces
    Bogachev, V. I.
    Da Prato, G.
    Roeckner, M.
    [J]. DOKLADY MATHEMATICS, 2008, 78 (01) : 544 - 549
  • [36] Slow manifolds for infinite-dimensional evolution equations
    Hummel, Felix
    Kuehn, Christian
    [J]. COMMENTARII MATHEMATICI HELVETICI, 2022, 97 (01) : 61 - 132
  • [37] Systems of essentially infinite-dimensional differential equations
    V. M. Statkevych
    [J]. Ukrainian Mathematical Journal, 2012, 63 : 1433 - 1440
  • [38] Infinite-dimensional symmetries of a general class of variable coefficient evolution equations in 2+1 dimensions
    Basarab-Horwath, P.
    Gungor, F.
    Ozemir, C.
    [J]. XXIST INTERNATIONAL CONFERENCE ON INTEGRABLE SYSTEMS AND QUANTUM SYMMETRIES (ISQS21), 2013, 474
  • [39] RANDOM ATTRACTORS OF SUPERCRITICAL WAVE EQUATIONS DRIVEN BY INFINITE-DIMENSIONAL ADDITIVE NOISE ON Rn
    Chen, Jianing
    Wang, Bixiang
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (01): : 665 - 689
  • [40] Generation of Conditional Densities in Nonlinear Filtering for Infinite-Dimensional Systems
    Sen, Nevroz
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2018, 63 (07) : 1868 - 1882