On an extension of the Hk mean curvature flow

被引:0
|
作者
Yi Li
机构
[1] Harvard University,Department of Mathematics
来源
Science China Mathematics | 2012年 / 55卷
关键词
mean curvature flow; Michael-Simon inequality; Moser iteration; 53C45; 35K55;
D O I
暂无
中图分类号
学科分类号
摘要
In this note, we generalize an extension theorem in [Le-Sesum] and [Xu-Ye-Zhao] of the mean curvature flow to the Hk mean curvature flow under some extra conditions. The main difficulty in proving the extension theorem is to find a suitable version of Michael-Simon inequality for the Hk mean curvature flow, and to do a suitable Moser iteration process. These two problems are overcome by imposing some extra conditions which may be weakened or removed in our forthcoming paper. On the other hand, we derive some estimates for the generalized mean curvature flow, which have their own interesting.
引用
收藏
页码:99 / 118
页数:19
相关论文
共 50 条
  • [31] Mean curvature flow with obstacles
    Almeida, L.
    Chambolle, A.
    Novaga, M.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2012, 29 (05): : 667 - 681
  • [32] Mean Curvature Flow in -manifolds
    Schaefer, Lars
    MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2012, 15 (03) : 231 - 255
  • [33] Gaussian mean curvature flow
    Alexander A. Borisenko
    Vicente Miquel
    Journal of Evolution Equations, 2010, 10 : 413 - 423
  • [34] Skew mean curvature flow
    Song, Chong
    Sun, Jun
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (01)
  • [35] Hyperbolic flow by mean curvature
    Rotstein, Horacio G.
    Brandon, Simon
    Novick-Cohen, Amy
    Journal of Crystal Growth, 1999, 198-199 (pt 2): : 1256 - 1261
  • [36] Hyperbolic flow by mean curvature
    Rotstein, HG
    Brandon, S
    Novick-Cohen, A
    JOURNAL OF CRYSTAL GROWTH, 1999, 198 : 1256 - 1261
  • [37] Riemannian mean curvature flow
    Estépar, RSJ
    Haker, S
    Westin, CF
    ADVANCES IN VISUAL COMPUTING, PROCEEDINGS, 2005, 3804 : 613 - 620
  • [38] Singularities of mean curvature flow
    Yuanlong Xin
    Science China Mathematics, 2021, 64 : 1349 - 1356
  • [39] On mean curvature flow with forcing
    Kim, Inwon
    Kwon, Dohyun
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (05) : 414 - 455
  • [40] Width and mean curvature flow
    Colding, Tobias H.
    Minicozzi, William P., II
    GEOMETRY & TOPOLOGY, 2008, 12 : 2517 - 2535