Crossover behavior of the thermal conductance and Kramers’ transition rate theory

被引:0
|
作者
Kirill A. Velizhanin
Subin Sahu
Chih-Chun Chien
Yonatan Dubi
Michael Zwolak
机构
[1] Los Alamos National Laboratory,Theoretical Division
[2] Center for Nanoscale Science and Technology,Department of Physics
[3] National Institute of Standards and Technology,Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology
[4] Maryland Nanocenter,undefined
[5] University of Maryland,undefined
[6] Oregon State University,undefined
[7] School of Natural Sciences,undefined
[8] University of California,undefined
[9] Ben-Gurion University of the Negev,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Kramers’ theory frames chemical reaction rates in solution as reactants overcoming a barrier in the presence of friction and noise. For weak coupling to the solution, the reaction rate is limited by the rate at which the solution can restore equilibrium after a subset of reactants have surmounted the barrier to become products. For strong coupling, there are always sufficiently energetic reactants. However, the solution returns many of the intermediate states back to the reactants before the product fully forms. Here, we demonstrate that the thermal conductance displays an analogous physical response to the friction and noise that drive the heat current through a material or structure. A crossover behavior emerges where the thermal reservoirs dominate the conductance at the extremes and only in the intermediate region are the intrinsic properties of the lattice manifest. Not only does this shed new light on Kramers’ classic turnover problem, this result is significant for the design of devices for thermal management and other applications, as well as the proper simulation of transport at the nanoscale.
引用
收藏
相关论文
共 50 条
  • [41] Skin conductance, heart rate and aggressive behavior type
    Armstrong, Todd
    Wells, Jessica
    Boisvert, Danielle L.
    Lewis, Richard
    Cooke, Eric M.
    Woeckener, Matthias
    Kavish, Nicholas
    BIOLOGICAL PSYCHOLOGY, 2019, 141 : 44 - 51
  • [42] THERMAL TRANSITION BEHAVIOR OF POLYPHOSPHAZENES
    SCHNEIDER, NS
    DESPER, CR
    SINGLER, RE
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1977, 173 (MAR20): : 94 - 94
  • [43] THERMAL TRANSITION BEHAVIOR OF POLYORGANOPHOSPHAZENES
    SCHNEIDER, NS
    DESPER, CR
    SINGLER, RE
    JOURNAL OF APPLIED POLYMER SCIENCE, 1976, 20 (11) : 3087 - 3103
  • [44] QUANTUM CLASSICAL CROSSOVER OF THE TRANSITION RATE IN THE DAMPED DOUBLE WELL
    GILLAN, MJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1987, 20 (24): : 3621 - 3641
  • [45] Microcanonical transition state theory rate coefficients from thermal rate constants via inverse Laplace transformation
    Venkatesh, PK
    Carr, RW
    Cohen, MH
    Dean, AM
    JOURNAL OF PHYSICAL CHEMISTRY A, 1998, 102 (42): : 8104 - 8115
  • [46] Microcanonical transition state theory rate coefficients from thermal rate constants via inverse Laplace transformation
    Venkatesh, PK
    Carr, RW
    Cohen, MH
    Dean, AM
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 217 : U381 - U382
  • [47] THERMAL CONDUCTANCE BASAL METABOLIC RATE AND ZONE OF THERMAL NEUTRALITY IN HIBERNATING BATS
    HENSHAW, RE
    FOLK, GE
    FEDERATION PROCEEDINGS, 1966, 25 (2P1) : 274 - &
  • [48] Low Thermal Conductance Transition Edge Sensor (TES) for SPICA
    Khosropanah, P.
    Dirks, B.
    van der Kuur, J.
    Ridder, M.
    Bruijn, M.
    Popescu, M.
    Hoevers, H.
    Gao, J. R.
    Morozov, D.
    Mauskopf, P.
    LOW TEMPERATURE DETECTORS LTD 13, 2009, 1185 : 42 - +
  • [49] Accurate thermal conductance and impedance measurements of transition edge sensors
    Lindeman, M. A.
    Barger, K. A.
    Brandl, D. E.
    Crowder, S. G.
    Rocks, L.
    McCammon, D.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 151 (1-2) : 180 - 184
  • [50] Accurate Thermal Conductance and Impedance Measurements of Transition Edge Sensors
    M. A. Lindeman
    K. A. Barger
    D. E. Brandl
    S. G. Crowder
    L. Rocks
    D. McCammon
    Journal of Low Temperature Physics, 2008, 151 : 180 - 184