Gradient estimates for a class of anisotropic nonlocal operators

被引:0
|
作者
Alberto Farina
Enrico Valdinoci
机构
[1] Université de Picardie Jules Verne,LAMFA, CNRS UMR 6140
[2] Faculté des Sciences,Department of Mathematics and Statistics
[3] University of Western Australia,undefined
关键词
Regularity theory; Anisotropic nonlocal elliptic equations; Modulus of continuity of the solutions; 35R11; 35B53; 35R09;
D O I
暂无
中图分类号
学科分类号
摘要
Using a classical technique introduced by Achi E. Brandt for elliptic equations, we study a general class of nonlocal equations obtained as a superposition of classical and fractional operators in different variables. We obtain that the increments of the derivative of the solution in the direction of a variable experiencing classical diffusion are controlled linearly, with a logarithmic correction. From this, we obtain Hölder estimates for the solution.
引用
收藏
相关论文
共 50 条
  • [21] Pointwise gradient estimates for evolution operators associated with Kolmogorov operators
    Angiuli, Luciana
    ARCHIV DER MATHEMATIK, 2013, 101 (02) : 159 - 170
  • [22] Liouville Theorems for a General Class of Nonlocal Operators
    Fall, Mouhamed Moustapha
    Weth, Tobias
    POTENTIAL ANALYSIS, 2016, 45 (01) : 187 - 200
  • [23] Numerical Methods for a Diffusive Class of Nonlocal Operators
    Gabriela Jaramillo
    Loic Cappanera
    Cory Ward
    Journal of Scientific Computing, 2021, 88
  • [24] Numerical Methods for a Diffusive Class of Nonlocal Operators
    Jaramillo, Gabriela
    Cappanera, Loic
    Ward, Cory
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 88 (01)
  • [25] On overdetermined problems for a general class of nonlocal operators
    Biswas, Anup
    Jarohs, Sven
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (05) : 2368 - 2393
  • [26] Liouville Theorems for a General Class of Nonlocal Operators
    Mouhamed Moustapha Fall
    Tobias Weth
    Potential Analysis, 2016, 45 : 187 - 200
  • [27] Parametrix construction for a class of anisotropic operators
    L. Maniccia
    M. Mughetti
    Annali dell’Università di Ferrara, 2003, 49 (1): : 263 - 284
  • [28] Estimates for a class of sublinear integral operators
    Prokhorov, D. V.
    Stepanov, V. D.
    DOKLADY MATHEMATICS, 2014, 89 (03) : 372 - 377
  • [29] Weighted estimates for a class of sublinear operators
    D. V. Prokhorov
    V. D. Stepanov
    Doklady Mathematics, 2013, 88 : 721 - 723
  • [30] Estimates for a class of sublinear integral operators
    D. V. Prokhorov
    V. D. Stepanov
    Doklady Mathematics, 2014, 89 : 372 - 377