Gradient estimates for a class of anisotropic nonlocal operators

被引:0
|
作者
Alberto Farina
Enrico Valdinoci
机构
[1] Université de Picardie Jules Verne,LAMFA, CNRS UMR 6140
[2] Faculté des Sciences,Department of Mathematics and Statistics
[3] University of Western Australia,undefined
关键词
Regularity theory; Anisotropic nonlocal elliptic equations; Modulus of continuity of the solutions; 35R11; 35B53; 35R09;
D O I
暂无
中图分类号
学科分类号
摘要
Using a classical technique introduced by Achi E. Brandt for elliptic equations, we study a general class of nonlocal equations obtained as a superposition of classical and fractional operators in different variables. We obtain that the increments of the derivative of the solution in the direction of a variable experiencing classical diffusion are controlled linearly, with a logarithmic correction. From this, we obtain Hölder estimates for the solution.
引用
收藏
相关论文
共 50 条
  • [1] Gradient estimates for a class of anisotropic nonlocal operators
    Farina, Alberto
    Valdinoci, Enrico
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (04):
  • [2] Regularity and rigidity theorems for a class of anisotropic nonlocal operators
    Alberto Farina
    Enrico Valdinoci
    manuscripta mathematica, 2017, 153 : 53 - 70
  • [3] Regularity and rigidity theorems for a class of anisotropic nonlocal operators
    Farina, Alberto
    Valdinoci, Enrico
    MANUSCRIPTA MATHEMATICA, 2017, 153 (1-2) : 53 - 70
  • [4] Nonlocal operators with singular anisotropic kernels
    Chaker, Jamil
    Kassmann, Moritz
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2020, 45 (01) : 1 - 31
  • [5] HEAT KERNEL OF ANISOTROPIC NONLOCAL OPERATORS
    Bogdan, Krzysztof
    Sztonyk, Pawel
    Knopova, Victoria
    DOCUMENTA MATHEMATICA, 2020, 25 : 1 - 54
  • [6] REGULARITY ESTIMATES FOR ELLIPTIC NONLOCAL OPERATORS
    Dyda, Bartlomiej
    Kassmann, Moritz
    ANALYSIS & PDE, 2020, 13 (02): : 317 - 370
  • [7] A Class of Nonlocal Hypoelliptic Operators and their Extensions
    Garofalo, Nicola
    Tralli, Giulio
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (05) : 1717 - 1744
  • [8] A Class of High Order Nonlocal Operators
    Tian, Xiaochuan
    Du, Qiang
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 222 (03) : 1521 - 1553
  • [9] A Class of High Order Nonlocal Operators
    Xiaochuan Tian
    Qiang Du
    Archive for Rational Mechanics and Analysis, 2016, 222 : 1521 - 1553
  • [10] A DETOUR ON A CLASS OF NONLOCAL DEGENERATE OPERATORS
    Schiera, Delia
    BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 2023, 14 (01) : 95 - 115