Complex Pythagorean fuzzy threshold graphs with application in petroleum replenishment

被引:0
|
作者
Muhammad Akram
Uzma Ahmad
Faruk Rukhsar
机构
[1] University of the Punjab,Department of Mathematics
[2] New Campus,Department of Mathematics, Faculty of Sciences
[3] Çankiri Karatekin University,undefined
关键词
Vertex cardinality of ; Complex Pythagorean fuzzy alternating ; Complex Pythagorean fuzzy threshold dimension and threshold partition number; 03E72; 68R10; 68R05;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this article is to present a novel idea of complex Pythagorean fuzzy threshold graphs (CPFTGs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {CPFTG}_{s})$$\end{document}. We introduce the relation between vertex cardinality and threshold values of a CPFTG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFTG}$$\end{document}. We propose that CPFTGs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFTG}_{s}$$\end{document} are free from alternating 4-cycle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4-cycle$$\end{document} and these graphs can be built up repeatedly adding an isolated or a dominating vertex. We present that the crisp graph of CPFTG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFTG}$$\end{document} is a split graph (SG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {SG})$$\end{document}. Further, the threshold dimension and threshold partition number of CPFGs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFG}_{s}$$\end{document} is defined. Some basic results on threshold dimension and threshold partition number also have been discussed. Finally, an application is presented on this developed concept. Due to the wide range of complex Pythagorean fuzzy sets (CPFSs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {CPFS}_{s})$$\end{document}, it is obvious that CPFTGs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFTG}_{s}$$\end{document} are more helpful and beneficial in modeling a problem as compared to complex fuzzy threshold graphs (CFTGs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {CFTG}_{s})$$\end{document} and complex intuitionistic fuzzy threshold graphs (CIFTGs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {CIFTG}_{s})$$\end{document}.
引用
收藏
页码:2125 / 2150
页数:25
相关论文
共 50 条
  • [21] Algorithms for computing Pythagorean fuzzy average edge connectivity of Pythagorean fuzzy graphs
    Akram, Muhammad
    Ahmad, Uzma
    Al-Shamiri, Mohammed M. Ali
    Shareef, Ayesha
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2024, 70 (01) : 375 - 416
  • [22] Pythagorean fuzzy soft graphs with applications
    Shahzadi, Gulfam
    Akram, Muhammad
    Davvaz, Bijan
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (04) : 4977 - 4991
  • [23] Energy of Pythagorean Fuzzy Graphs with Applications
    Akram, Muhammad
    Naz, Sumera
    MATHEMATICS, 2018, 6 (08)
  • [24] Certain Notions of Pythagorean Fuzzy Graphs
    Akram, Muhammad
    Ilyas, Farwa
    Saeid, Arsham Borumand
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 36 (06) : 5857 - 5874
  • [25] Extension of Threshold Graphs Under Complex Fuzzy Environment
    Hameed S.
    Akram M.
    Mustafa N.
    Samanta S.
    International Journal of Applied and Computational Mathematics, 2021, 7 (5)
  • [26] Certain graphs under Pythagorean fuzzy environment
    Muhammad Akram
    Jawaria Mohsan Dar
    Sumera Naz
    Complex & Intelligent Systems, 2019, 5 : 127 - 144
  • [27] Certain graphs under Pythagorean fuzzy environment
    Akram, Muhammad
    Dar, Jawaria Mohsan
    Naz, Sumera
    COMPLEX & INTELLIGENT SYSTEMS, 2019, 5 (02) : 127 - 144
  • [28] Pythagorean Fuzzy Matroids with Application
    Asif, Muhammad
    Akram, Muhammad
    Ali, Ghous
    SYMMETRY-BASEL, 2020, 12 (03):
  • [29] Planar Graphs under Pythagorean Fuzzy Environment
    Akram, Muhammad
    Dar, Jawaria Mohsan
    Farooq, Adeel
    MATHEMATICS, 2018, 6 (12)
  • [30] Extension of Threshold Graphs Under Complex Intuitionistic Fuzzy Environment
    Hameed, Saira
    Akram, Muhammad
    Mustafa, Noreen
    Karaaslan, Faruk
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2021, 37 (3-4) : 295 - 315