The purpose of this article is to present a novel idea of complex Pythagorean fuzzy threshold graphs (CPFTGs)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\mathcal {CPFTG}_{s})$$\end{document}. We introduce the relation between vertex cardinality and threshold values of a CPFTG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {CPFTG}$$\end{document}. We propose that CPFTGs\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {CPFTG}_{s}$$\end{document} are free from alternating 4-cycle\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$4-cycle$$\end{document} and these graphs can be built up repeatedly adding an isolated or a dominating vertex. We present that the crisp graph of CPFTG\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {CPFTG}$$\end{document} is a split graph (SG)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\mathcal {SG})$$\end{document}. Further, the threshold dimension and threshold partition number of CPFGs\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {CPFG}_{s}$$\end{document} is defined. Some basic results on threshold dimension and threshold partition number also have been discussed. Finally, an application is presented on this developed concept. Due to the wide range of complex Pythagorean fuzzy sets (CPFSs)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\mathcal {CPFS}_{s})$$\end{document}, it is obvious that CPFTGs\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {CPFTG}_{s}$$\end{document} are more helpful and beneficial in modeling a problem as compared to complex fuzzy threshold graphs (CFTGs)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\mathcal {CFTG}_{s})$$\end{document} and complex intuitionistic fuzzy threshold graphs (CIFTGs)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(\mathcal {CIFTG}_{s})$$\end{document}.
机构:
Department of Mathematics, University of the Punjab, New Campus, P.O. Box No. 54590, LahoreDepartment of Mathematics, University of the Punjab, New Campus, P.O. Box No. 54590, Lahore
Hameed S.
Akram M.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, University of the Punjab, New Campus, P.O. Box No. 54590, LahoreDepartment of Mathematics, University of the Punjab, New Campus, P.O. Box No. 54590, Lahore
Akram M.
Mustafa N.
论文数: 0引用数: 0
h-index: 0
机构:
Department of Mathematics, University of the Punjab, New Campus, P.O. Box No. 54590, LahoreDepartment of Mathematics, University of the Punjab, New Campus, P.O. Box No. 54590, Lahore
Mustafa N.
Samanta S.
论文数: 0引用数: 0
h-index: 0
机构:
Tamralipta Mahavidyalaya, Tamluk, 721636, West BengalDepartment of Mathematics, University of the Punjab, New Campus, P.O. Box No. 54590, Lahore