Complex Pythagorean fuzzy threshold graphs with application in petroleum replenishment

被引:0
|
作者
Muhammad Akram
Uzma Ahmad
Faruk Rukhsar
机构
[1] University of the Punjab,Department of Mathematics
[2] New Campus,Department of Mathematics, Faculty of Sciences
[3] Çankiri Karatekin University,undefined
关键词
Vertex cardinality of ; Complex Pythagorean fuzzy alternating ; Complex Pythagorean fuzzy threshold dimension and threshold partition number; 03E72; 68R10; 68R05;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of this article is to present a novel idea of complex Pythagorean fuzzy threshold graphs (CPFTGs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {CPFTG}_{s})$$\end{document}. We introduce the relation between vertex cardinality and threshold values of a CPFTG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFTG}$$\end{document}. We propose that CPFTGs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFTG}_{s}$$\end{document} are free from alternating 4-cycle\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$4-cycle$$\end{document} and these graphs can be built up repeatedly adding an isolated or a dominating vertex. We present that the crisp graph of CPFTG\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFTG}$$\end{document} is a split graph (SG)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {SG})$$\end{document}. Further, the threshold dimension and threshold partition number of CPFGs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFG}_{s}$$\end{document} is defined. Some basic results on threshold dimension and threshold partition number also have been discussed. Finally, an application is presented on this developed concept. Due to the wide range of complex Pythagorean fuzzy sets (CPFSs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {CPFS}_{s})$$\end{document}, it is obvious that CPFTGs\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {CPFTG}_{s}$$\end{document} are more helpful and beneficial in modeling a problem as compared to complex fuzzy threshold graphs (CFTGs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {CFTG}_{s})$$\end{document} and complex intuitionistic fuzzy threshold graphs (CIFTGs)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathcal {CIFTG}_{s})$$\end{document}.
引用
收藏
页码:2125 / 2150
页数:25
相关论文
共 50 条
  • [1] Complex Pythagorean fuzzy threshold graphs with application in petroleum replenishment
    Akram, Muhammad
    Ahmad, Uzma
    Rukhsar
    Karaaslan, Faruk
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (03) : 2125 - 2150
  • [2] Picture Fuzzy Threshold Graphs with Application in Medicine Replenishment
    Das, Sankar
    Ghorai, Ganesh
    Xin, Qin
    ENTROPY, 2022, 24 (05)
  • [3] Threshold Graphs Under Pythagorean Fuzzy Information
    Akram, Muhammad
    Ahmad, Uzma
    Rukhsar
    Samanta, Sovan
    JOURNAL OF MULTIPLE-VALUED LOGIC AND SOFT COMPUTING, 2022, 38 (5-6) : 547 - 574
  • [4] Complex Pythagorean Fuzzy Planar Graphs
    Akram M.
    Bashir A.
    Samanta S.
    International Journal of Applied and Computational Mathematics, 2020, 6 (3)
  • [5] Competition graphs under complex Pythagorean fuzzy information
    Muhammad Akram
    Aqsa Sattar
    Journal of Applied Mathematics and Computing, 2020, 63 : 543 - 583
  • [6] Competition graphs under complex Pythagorean fuzzy information
    Akram, Muhamma
    Sattar, Aqsa
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 63 (1-2) : 543 - 583
  • [7] Complex Pythagorean Dombi fuzzy graphs for decision making
    Muhammad Akram
    Ayesha Khan
    Granular Computing, 2021, 6 : 645 - 669
  • [8] Complex Pythagorean Dombi fuzzy graphs for decision making
    Akram, Muhammad
    Khan, Ayesha
    GRANULAR COMPUTING, 2021, 6 (03) : 645 - 669
  • [9] Simplified interval-valued Pythagorean fuzzy graphs with application
    Muhammad Akram
    Sumera Naz
    Bijan Davvaz
    Complex & Intelligent Systems, 2019, 5 : 229 - 253
  • [10] Pythagorean Dombi fuzzy graphs
    Muhammad Akram
    Jawaria Mohsan Dar
    Sumera Naz
    Complex & Intelligent Systems, 2020, 6 : 29 - 54