Binary lie algebras of small dimensions

被引:0
|
作者
Kuzmin E.N. [1 ]
机构
关键词
Small Dimension; Short Proof; Multiplication Table; Ground Field; Arbitrary Field;
D O I
10.1007/BF02671589
中图分类号
学科分类号
摘要
We give a simpler and shorter proof of the Gainov theorem in [1], which dealt with classifying non-Lie binary Lie algebras of dimension ≠ 4 over a field of characteristic ≠ 2. Concurrently, the case of characteristic 2 is treated, and we find out an exotic 4-dimensional non-Lie Mal'tsev algebra, which is a split extension of an irreducible 1-dimensional Mal'tsev module over a simple 3-dimensional Lie algebra. © 1998 Plenum Publishing Corporation.
引用
收藏
页码:181 / 186
页数:5
相关论文
共 50 条
  • [31] Variety of Jordan algebras in small dimensions
    Kashuba, Iryna
    ALGEBRA & DISCRETE MATHEMATICS, 2006, (02): : 62 - 76
  • [32] LIE-ALGEBRAS WITH A SMALL NUMBER OF IDEALS
    CLAVIJO, MPB
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 177 : 233 - 249
  • [33] Capability of Nilpotent Lie Algebras of Small Dimension
    Shanbehbazari, Fatemeh Pazandeh
    Niroomand, Peyman
    Russo, Francesco G.
    Shamsaki, Afsaneh
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2022, 48 (03) : 1153 - 1167
  • [34] Maximal Abelian Dimensions in Some Families of Nilpotent Lie Algebras
    Juan C. Benjumea
    Juan Núñez
    Ángel F. Tenorio
    Algebras and Representation Theory, 2012, 15 : 697 - 713
  • [35] Dimensions of Demazure modules for rank two affine Lie algebras
    Sanderson, YB
    COMPOSITIO MATHEMATICA, 1996, 101 (02) : 115 - 131
  • [36] Resolutions of singularities of varieties of Lie algebras of dimensions 3 and 4
    Basili, R
    JOURNAL OF LIE THEORY, 2002, 12 (02) : 397 - 407
  • [37] Nilpotent metric Lie algebras of small dimension
    Kath, Ines
    JOURNAL OF LIE THEORY, 2007, 17 (01) : 41 - 61
  • [38] Capability of Nilpotent Lie Algebras of Small Dimension
    Fatemeh Pazandeh Shanbehbazari
    Peyman Niroomand
    Francesco G. Russo
    Afsaneh Shamsaki
    Bulletin of the Iranian Mathematical Society, 2022, 48 : 1153 - 1167
  • [39] On real dimensions of lie algebras of holomorphic affine vector fields
    A. Ya. Sultanov
    Russian Mathematics, 2007, 51 (4) : 51 - 64
  • [40] Maximal Abelian Dimensions in Some Families of Nilpotent Lie Algebras
    Benjumea, Juan C.
    Nunez, Juan
    Tenorio, Angel F.
    ALGEBRAS AND REPRESENTATION THEORY, 2012, 15 (04) : 697 - 713