Predicting regional space–time variation of PM2.5 with land-use regression model and MODIS data

被引:0
|
作者
Liang Mao
Youliang Qiu
Claudia Kusano
Xiaohui Xu
机构
[1] University of Florida,Department of Geography, College of Liberal Arts and Sciences
[2] University of Florida,Department of Epidemiology, College of Public Health and Health Professions and College of Medicine
关键词
Air pollution; Fine particulate matter; PM; Land-use regression model; MODIS image;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:128 / 138
页数:10
相关论文
共 50 条
  • [41] Optimization of PM2.5 Estimation Using Landscape Pattern Information and Land Use Regression Model in Zhejiang, China
    Yang, Shan
    Wu, Haitian
    Chen, Jian
    Lin, Xintao
    Lu, Ting
    ATMOSPHERE, 2018, 9 (02)
  • [42] Analysis of the Contribution of the Road Traffic Industry to the PM2.5 Emission for Different Land-Use Types
    Xu, Peng
    Wang, Wei
    Ji, Jiawei
    Yao, Shunyu
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2014, 2014
  • [43] Developing Land-Use Regression Models to Estimate PM2.5-Bound Compound Concentrations
    Hsu, Chin-Yu
    Wu, Chih-Da
    Hsiao, Ya-Ping
    Chen, Yu-Cheng
    Chen, Mu-Jean
    Lung, Shih-Chun Candice
    REMOTE SENSING, 2018, 10 (12)
  • [44] Development of Land Use Regression Models for PM2.5, PM2.5 Absorbance, PM10 and PMcoarse in 20 European Study Areas; Results of the ESCAPE Project
    Eeftens, Marloes
    Beelen, Rob
    de Hoogh, Kees
    Bellander, Tom
    Cesaroni, Giulia
    Cirach, Marta
    Declercq, Christophe
    Dedele, Audrius
    Dons, Evi
    de Nazelle, Audrey
    Dimakopoulou, Konstantina
    Eriksen, Kirsten
    Falq, Gregoire
    Fischer, Paul
    Galassi, Claudia
    Grazuleviciene, Regina
    Heinrich, Joachim
    Hoffmann, Barbara
    Jerrett, Michael
    Keidel, Dirk
    Korek, Michal
    Lanki, Timo
    Lindley, Sarah
    Madsen, Christian
    Moelter, Anna
    Nador, Gizella
    Nieuwenhuijsen, Mark
    Nonnemacher, Michael
    Pedeli, Xanthi
    Raaschou-Nielsen, Ole
    Patelarou, Evridiki
    Quass, Ulrich
    Ranzi, Andrea
    Schindler, Christian
    Stempfelet, Morgane
    Stephanou, Euripides
    Sugiri, Dorothea
    Tsai, Ming-Yi
    Yli-Tuomi, Tarja
    Varro, Mihaly J.
    Vienneau, Danielle
    von Klot, Stephanie
    Wolf, Kathrin
    Brunekreef, Bert
    Hoek, Gerard
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (20) : 11195 - 11205
  • [45] Winter and Summer PM2.5 Land Use Regression Models for the City of Novi Sad, Serbia
    Dmitrasinovic, Sonja
    Radonic, Jelena
    Zivkovic, Marija
    Cirovic, Zeljko
    Jovasevic-Stojanovic, Milena
    Davidovic, Milos
    SUSTAINABILITY, 2024, 16 (13)
  • [46] Land use regression modelling of PM2.5 spatial variations in different seasons in urban areas
    Shi, Tuo
    Hu, Yuanman
    Liu, Miao
    Li, Chunlin
    Zhang, Chuyi
    Liu, Chong
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 743
  • [47] Estimating Regional Spatial and Temporal Variability of PM2.5 Concentrations Using Satellite Data, Meteorology, and Land Use Information
    Liu, Yang
    Paciorek, Christopher J.
    Koutrakis, Petros
    ENVIRONMENTAL HEALTH PERSPECTIVES, 2009, 117 (06) : 886 - 892
  • [48] Assessment of the Dynamic Exposure to PM2.5 Based on Hourly Cell Phone Location and Land Use Regression Model in Beijing
    Liu, Junli
    Cai, Panli
    Dong, Jin
    Wang, Junshun
    Li, Runkui
    Song, Xianfeng
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (11)
  • [49] Effects of land-use patterns on PM2.5 in China's developed coastal region: Exploration and solutions
    Lin, Yifan
    Yuan, Xinyi
    Zhai, Tianlin
    Wang, Jing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2020, 703 (703)
  • [50] Spatial distribution characteristics of PM2.5 and PM10 in Xi'an City predicted by land use regression models
    Han, Li
    Zhao, Jingyuan
    Gao, Yuejing
    Gu, Zhaolin
    Xin, Kai
    Zhang, Jianxin
    SUSTAINABLE CITIES AND SOCIETY, 2020, 61 (61)