Predicting regional space–time variation of PM2.5 with land-use regression model and MODIS data

被引:0
|
作者
Liang Mao
Youliang Qiu
Claudia Kusano
Xiaohui Xu
机构
[1] University of Florida,Department of Geography, College of Liberal Arts and Sciences
[2] University of Florida,Department of Epidemiology, College of Public Health and Health Professions and College of Medicine
关键词
Air pollution; Fine particulate matter; PM; Land-use regression model; MODIS image;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:128 / 138
页数:10
相关论文
共 50 条
  • [1] Predicting regional space-time variation of PM2.5 with land-use regression model and MODIS data
    Mao, Liang
    Qiu, Youliang
    Kusano, Claudia
    Xu, Xiaohui
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2012, 19 (01) : 128 - 138
  • [2] A Land Use Regression Model for Predicting PM2.5 in Mexico City
    Texcalac Sangrador, J. L.
    Escamilla Nunez, M. C.
    Barraza Villarreal, A.
    Hernandez Cadena, L.
    Jerrett, M.
    Romieu, I
    EPIDEMIOLOGY, 2008, 19 (06) : S259 - S259
  • [3] A hybrid land use regression/AERMOD model for predicting intra-urban variation in PM2.5
    Michanowicz, Drew R.
    Shmool, Jessie L. C.
    Tunno, Brett J.
    Tripathy, Sheila
    Gillooly, Sara
    Kinnee, Ellen
    Clougherty, Jane E.
    ATMOSPHERIC ENVIRONMENT, 2016, 131 : 307 - 315
  • [4] Spatial variation of ambient PM2.5 and PM10 in the industrial city of Arak, Iran: A land-use regression
    Karimi, Behrooz
    Shokrinezhad, Behnosh
    ATMOSPHERIC POLLUTION RESEARCH, 2021, 12 (12)
  • [5] Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China
    Jiansheng Wu
    Jiacheng Li
    Jian Peng
    Weifeng Li
    Guang Xu
    Chengcheng Dong
    Environmental Science and Pollution Research, 2015, 22 : 7045 - 7061
  • [6] Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China
    Wu, Jiansheng
    Li, Jiacheng
    Peng, Jian
    Li, Weifeng
    Xu, Guang
    Dong, Chengcheng
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2015, 22 (09) : 7045 - 7061
  • [7] Combining Land-Use Regression and Chemical Transport Modeling in a Spatiotemporal Geostatistical Model for Ozone and PM2.5
    Wang, Meng
    Sampson, Paul D.
    Hu, Jianlin
    Kleeman, Michael
    Keller, Joshua P.
    Olives, Casey
    Szpiro, Adam A.
    Vedal, Sverre
    Kaufman, Joel D.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2016, 50 (10) : 5111 - 5118
  • [8] Distribution of PM2.5 Air Pollution in Mexico City: Spatial Analysis with Land-Use Regression Model
    Hinojosa-Balino, Israel
    Infante-Vazquez, Oscar
    Vallejo, Maite
    APPLIED SCIENCES-BASEL, 2019, 9 (14):
  • [9] A hybrid kriging/land-use regression model to assess PM2.5 spatial-temporal variability
    Wu, Chih-Da
    Zeng, Yu-Ting
    Lung, Shih-Chun Candice
    SCIENCE OF THE TOTAL ENVIRONMENT, 2018, 645 : 1456 - 1464
  • [10] A hybrid satellite and land use regression model of source-specific PM2.5 and PM2.5 constituents
    Rahman, Md Mostafijur
    Thurston, George
    ENVIRONMENT INTERNATIONAL, 2022, 163