Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source

被引:0
|
作者
Xiaoshan Wang
Zhongqian Wang
Zhe Jia
机构
[1] Luoyang Normal University,Department of Mathematics
[2] Jiangsu Second Normal University,School of Mathematics Science
[3] Linyi University,School of Mathematics and Statistics
来源
Acta Mathematica Scientia | 2024年 / 44卷
关键词
global weak solutions; attraction-repulsion; -Laplacian; logistic source; 35Q92; 35K65; 35Q35; 92C17;
D O I
暂无
中图分类号
学科分类号
摘要
This paper is concerned with the following attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source {ut=∇⋅(|∇u|p−2∇u)−χ∇⋅(u∇v)+ξ∇⋅(u∇w)+f(u),x∈Ω,t>0,vt=Δv−βv+αuk1,x∈Ω,t>0,0=Δw−δw+γuk2,x∈Ω,t>0,u(x,0)=u0(x),v(x,0)=v0(x),w(x,0)=w0(x),x∈Ω.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left\{ {\matrix{{{u_t} = \nabla \cdot (|\nabla u{|^{p - 2}}\nabla u) - \chi \nabla \cdot (u\nabla v) + \xi \nabla \cdot (u\nabla w) + f(u),} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {{v_t} = \Delta v - \beta v + \alpha {u^{{k_1}}},} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {0 = \Delta w - \delta w + \gamma {u^{{k_2}}},} \hfill & {x \in \Omega ,\,\,t > 0,} \hfill \cr {u(x,0) = {u_0}(x),\,\,\,v(x,0) = {v_0}(x),\,\,\,w(x,0) = {w_0}(x),} \hfill & {x \in \Omega .} \hfill \cr } } \right.$$\end{document}
引用
收藏
页码:909 / 924
页数:15
相关论文
共 50 条
  • [1] Global weak solutions for an attraction-repulsion chemotaxis system with p-Laplacian diffusion and logistic source
    Wang, Xiaoshan
    Wang, Zhongqian
    Jia, Zhe
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (03) : 909 - 924
  • [2] GLOBAL WEAK SOLUTIONS FOR AN ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH p-LAPLACIAN DIFFUSION AND LOGISTIC SOURCE
    王晓闪
    王忠谦
    贾哲
    Acta Mathematica Scientia, 2024, 44 (03) : 909 - 924
  • [3] Global boundedness of weak solution in an attraction-repulsion chemotaxis system with p-Laplacian diffusion
    Li, Yan
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 51
  • [4] GLOBAL BOUNDEDNESS OF WEAK SOLUTIONS FOR AN ATTRACTION-REPULSION CHEMOTAXIS SYSTEM WITH P-LAPLACIAN DIFFUSION AND NONLINEAR PRODUCTION
    Jia, Zhe
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (09): : 4847 - 4863
  • [5] On an attraction-repulsion chemotaxis system with a logistic source
    Li, Xie
    Xiang, Zhaoyin
    IMA JOURNAL OF APPLIED MATHEMATICS, 2016, 81 (01) : 165 - 198
  • [6] An attraction-repulsion chemotaxis system with logistic source
    Zhang, Qingshan
    Li, Yuxiang
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2016, 96 (05): : 570 - 584
  • [7] Global boundedness in quasilinear attraction-repulsion chemotaxis system with logistic source
    Tian, Miaoqing
    He, Xiao
    Zheng, Sining
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 30 : 1 - 15
  • [8] A quasilinear attraction-repulsion chemotaxis system with logistic source
    Cai, Yuanyuan
    Li, Zhongping
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2023, 70
  • [9] Global dynamics for an attraction-repulsion chemotaxis model with logistic source
    Ren, Guoqiang
    Liu, Bin
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (08) : 4320 - 4373
  • [10] Global weak solutions for an attraction-repulsion system with nonlinear diffusion
    Li, Dan
    Mu, Chunlai
    Lin, Ke
    Wang, Liangchen
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 7368 - 7395