Flat-Plate Solar Collector Thermal Performance and Optimal Operation Mode by Exergy Analysis and Numerical Simulation

被引:0
|
作者
Yemeli Wenceslas Koholé
Fodoup Cyrille Vincelas Fohagui
Ghislain Tchuen
机构
[1] University of Dschang,Department of Energetic, Environment and Thermal Engineering, IUT
[2] University of Dschang,FV Bandjoun, UR
关键词
Flat-plate collector; Energy; Exergy destruction; Exergy efficiency; Simulation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the effect of a flat-plate solar collector components exergy destruction rates on the collector performance has been examined. A theoretical model based on energy and exergy balance for glass cover, absorber plate and working fluid resulted in nonlinear ordinary differentials non-autonomous system of equations that was solved numerically. Upon verification of the accuracy of the proposed model with experimental data, the effect of parameters such as solar radiation, mass flow rate, inlet fluid temperature and insulation thickness on the exergy destruction rates and exergy efficiency has been investigated. The model was used to optimize parameters, such as inlet fluid temperature, mass flow rate and number of collector tube. The results reveal that the highest exergy destruction rate occurs in the absorber plate, which is 79.23% of the total exergy destruction rate. Increasing the mass flow rate to 0.0087 kg/s leads to a decrease in the absorber plate exergy destruction rate to a minimum value of 575.74 W/m2 and to an increase in the exergy efficiency to a maximum value of 21.97%. When the inlet fluid temperature increases from 20 to 50 °C, the absorber plate exergy destruction rate reduces from 676.66 to 438.40 W/m2 resulting in a significant increase in the collector exergy efficiency from 6.80 to 37.86%. The optimum operating condition was found to be 37 °C for the inlet fluid temperature, 0.0087 kg/s for mass flow rate and fifteen for the number of tubes.
引用
收藏
页码:1877 / 1897
页数:20
相关论文
共 50 条
  • [41] Macro Flat-Plate Solar Thermal Collector With Rectangular Channels
    Ibrahim, Oussama
    Younes, Rafic
    Ibrahim, Mohamad
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2018, 140 (06):
  • [42] THERMAL CONTACT CONDUCTANCE OF FLAT-PLATE SOLAR COLLECTOR MATERIALS
    SOMERS, RR
    MILLER, JW
    MCCAFFERTY, RH
    FLETCHER, LS
    JOURNAL OF ENERGY, 1980, 4 (05): : 233 - 236
  • [43] HEAT-TRANSFER ANALYSIS OF A FLAT-PLATE COLLECTOR IN A SOLAR THERMAL PUMP
    SUMATHY, K
    VENKATESH, A
    SRIRAMULU, V
    ENERGY, 1994, 19 (09) : 983 - 991
  • [44] Buoyancy effects on thermal behavior of a flat-plate solar collector
    Fan, Jianhua
    Furbo, Simon
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 2008, 130 (02): : 0210101 - 02101012
  • [45] AN ANALYSIS OF A FLAT-PLATE SOLAR COLLECTOR WITH INTERNAL BOILING
    ABRAMZON, B
    YARON, I
    BORDE, I
    JOURNAL OF SOLAR ENERGY ENGINEERING-TRANSACTIONS OF THE ASME, 1983, 105 (04): : 454 - 460
  • [46] Performance evaluation of a flat-plate solar collector filled with porous metal foam: Experimental and numerical analysis
    Saedodin, S.
    Zamzamian, S. A. H.
    Nimvari, M. Eshagh
    Wongwises, S.
    Jouybari, H. Javaniyan
    ENERGY CONVERSION AND MANAGEMENT, 2017, 153 : 278 - 287
  • [47] A novel structure design and numerical analysis of porous media-assisted enhanced thermal performance of flat-plate solar collector
    Fu, Yingmei
    Xia, Yongfang
    Lin, Xinwei
    Cheng, Zude
    Zhang, Zhi
    Feng, Junsheng
    Wang, Haitao
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 40
  • [48] Numerical study on performance improvement of a flat-plate solar collector filled with porous foam
    Anirudh, K.
    Dhinakaran, S.
    RENEWABLE ENERGY, 2020, 147 : 1704 - 1717
  • [49] INVESTIGATION OF A FLAT-PLATE SOLAR COLLECTOR PERFORMANCE WITH THE USE OF A SOLAR SIMULATOR
    HANNA, GB
    ELSHOBOKSHY, MS
    SAADI, LH
    JOURNAL OF ENGINEERING SCIENCES, 1980, 6 (02): : 199 - 209
  • [50] Modelling of liquid flat-plate solar collector operation in transient states
    Zima, W.
    Dziewa, P.
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2011, 225 (A1) : 53 - 62