Flat-Plate Solar Collector Thermal Performance and Optimal Operation Mode by Exergy Analysis and Numerical Simulation

被引:0
|
作者
Yemeli Wenceslas Koholé
Fodoup Cyrille Vincelas Fohagui
Ghislain Tchuen
机构
[1] University of Dschang,Department of Energetic, Environment and Thermal Engineering, IUT
[2] University of Dschang,FV Bandjoun, UR
关键词
Flat-plate collector; Energy; Exergy destruction; Exergy efficiency; Simulation;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the effect of a flat-plate solar collector components exergy destruction rates on the collector performance has been examined. A theoretical model based on energy and exergy balance for glass cover, absorber plate and working fluid resulted in nonlinear ordinary differentials non-autonomous system of equations that was solved numerically. Upon verification of the accuracy of the proposed model with experimental data, the effect of parameters such as solar radiation, mass flow rate, inlet fluid temperature and insulation thickness on the exergy destruction rates and exergy efficiency has been investigated. The model was used to optimize parameters, such as inlet fluid temperature, mass flow rate and number of collector tube. The results reveal that the highest exergy destruction rate occurs in the absorber plate, which is 79.23% of the total exergy destruction rate. Increasing the mass flow rate to 0.0087 kg/s leads to a decrease in the absorber plate exergy destruction rate to a minimum value of 575.74 W/m2 and to an increase in the exergy efficiency to a maximum value of 21.97%. When the inlet fluid temperature increases from 20 to 50 °C, the absorber plate exergy destruction rate reduces from 676.66 to 438.40 W/m2 resulting in a significant increase in the collector exergy efficiency from 6.80 to 37.86%. The optimum operating condition was found to be 37 °C for the inlet fluid temperature, 0.0087 kg/s for mass flow rate and fifteen for the number of tubes.
引用
收藏
页码:1877 / 1897
页数:20
相关论文
共 50 条
  • [1] Flat-Plate Solar Collector Thermal Performance and Optimal Operation Mode by Exergy Analysis and Numerical Simulation
    Kohole, Yemeli Wenceslas
    Fohagui, Fodoup Cyrille Vincelas
    Tchuen, Ghislain
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2021, 46 (02) : 1877 - 1897
  • [2] Numerical simulation investigation on thermal performance of heat pipe flat-plate solar collector
    Zhang, Dongwei
    Tao, Hanzhong
    Wang, Mimi
    Sun, Zishuai
    Jiang, Chuan
    APPLIED THERMAL ENGINEERING, 2017, 118 : 113 - 126
  • [3] Flat-plate solar collector thermal performance assessment via energy, exergy and irreversibility analysis
    Wenceslas Koholé Y.
    Cyrille Vincelas Fohagui F.
    Tchuen G.
    Energy Conversion and Management: X, 2022, 15
  • [4] Simulation of Optimal Exergy Efficiency of Solar Flat Plate Collector
    Das, Subhra
    JORDAN JOURNAL OF MECHANICAL AND INDUSTRIAL ENGINEERING, 2016, 10 (01): : 51 - 65
  • [5] Determination of the optimal operation mode of a flat solar collector by exergetic analysis and numerical simulation
    Luminosu, I
    Fara, L
    ENERGY, 2005, 30 (05) : 731 - 747
  • [6] Numerical simulation for structural parameters of flat-plate solar collector
    Zhang Jiandong
    Tao Hanzhong
    Chen Susu
    SOLAR ENERGY, 2015, 117 : 192 - 202
  • [7] Numerical analysis on the thermal performance of a roof-integrated flat-plate solar collector assembly
    Kang, Myeong-Cheol
    Kang, Yong-Heack
    Lim, Sang-Hoon
    Chun, Wongee
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2006, 33 (08) : 976 - 984
  • [8] Enhanced thermal performance of a flat-plate solar collector inserted with porous media: A numerical simulation study
    Xia, Yongfang
    Lin, Xinwei
    Shu, Yunxiang
    Cheng, Zude
    THERMAL SCIENCE AND ENGINEERING PROGRESS, 2023, 44
  • [9] PERFORMANCE OF A FLAT-PLATE SOLAR COLLECTOR
    BHARDWAJ, RK
    GUPTA, BK
    PRAKASH, R
    SOLAR ENERGY, 1967, 11 (3-4) : 160 - &
  • [10] Numerical study ofantifreeze performance of flat-plate solar collector
    影响太阳能平板集热器抗冻性能因素分析
    Ji, Jie (jijie@ustc.edu.cn), 2018, Science Press (39):