Integral Representation of Some Functions Related to the Gamma Function

被引:4
|
作者
Christian Berg
机构
[1] University of Copenhagen,Department of Mathematics
关键词
Primary 33B15; Secondary 26A48; Complete monotonicity; Gamma function;
D O I
10.1007/s00009-004-0022-6
中图分类号
学科分类号
摘要
We prove that the functions \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi (x) = [\Gamma (x + 1)]^{1/x} (1 + 1/x)^x /x$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\log \Phi (x)$$\end{document} are Stieltjes transforms.
引用
收藏
页码:433 / 439
页数:6
相关论文
共 50 条