THE MONOTONICITY AND LOG-BEHAVIOUR OF SOME FUNCTIONS RELATED TO THE EULER GAMMA FUNCTION

被引:0
|
作者
Zhu, Bao-Xuan [1 ]
机构
[1] Jiangsu Normal Univ, Sch Math & Stat, Xuzhou 221116, Peoples R China
基金
中国国家自然科学基金;
关键词
monotonicity; log-convexity; log-concavity; completely monotonic functions; infinite log-monotonicity; COMBINATORIAL SEQUENCES; CONVEXITY;
D O I
10.1017/S001309151600016X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to develop analytic techniques to deal with the monotonicity of certain combinatorial sequences. On the one hand, a criterion for the monotonicity of the function (x)root f(x) is given, which is a continuous analogue of a result of Wang and Zhu. On the other hand, the log-behaviour of the functions theta(x) = x root 2 zeta(x)Gamma(x + 1) and F(x) = x root Gamma(ax + b + 1)/Gamma(cx + d + 1)Gamma(ex + f + 1) is considered, where zeta( x) and Gamma(x) are the Riemann zeta function and the Euler Gamma function, respectively. Consequently, the strict log-concavities of the function theta(x) (a conjecture of Chen et al.) and {(n)root z(n)} for some combinatorial sequences (including the Bernoulli numbers, the tangent numbers, the Catalan numbers, the Fuss-Catalan numbers, and the binomial coefficients ((2n)(n) ), ((3n)(n) ), ((4n)(n) ), ((5n)(n) ), ((5n)(2n) )) are demonstrated. In particular, this contains some results of Chen et al., and Luca and Stanica. Finally, by researching the logarithmically complete monotonicity of some functions, the infinite log-monotonicity of the sequence { (n(0) + ia)!/(k(0) + ib)! ((k) over bar (0) + i (b) over bar)!}(i >= 0) is proved. This generalizes two results of Chen et al. that both the Catalan numbers (1/(n+ 1)) ((2n)(n)) and the central binomial coefficients ((2n)(n)) are infinitely log- monotonic, and strengthens one result of Su and Wang that ((delta n)(dn)) is log- convex in n for positive integers d > delta. In addition, the asymptotically infinite log- monotonicity of derangement numbers is showed. In order to research the stronger properties of the above functions 0(x) and F(x), the logarithmically complete monotonicity of functions 1/(x)root a zeta(x + b)Gamma(x + c) and x root rho(n)Pi(i=1) Gamma(x + a(i))/Gamma(x + b(i)) is also obtained, which generalizes the results of Lee and Tepedelenlioglu, and Qi and Li.
引用
收藏
页码:527 / 543
页数:17
相关论文
共 50 条
  • [1] On Some Complete Monotonicity of Functions Related to Generalized k-Gamma Function
    Moustafa, Hesham
    Almuashi, Hanan
    Mahmoud, Mansour
    [J]. JOURNAL OF MATHEMATICS, 2021, 2021
  • [2] Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function
    Zhen-Hang Yang
    Jing-Feng Tian
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3603 - 3617
  • [3] Monotonicity, convexity, and complete monotonicity of two functions related to the gamma function
    Yang, Zhen-Hang
    Tian, Jing-Feng
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3603 - 3617
  • [4] MONOTONICITY PROPERTIES RELATED TO SOME GAMMA FUNCTION ESTIMATES
    Mortici, Cristinel
    Dumitrescu, Sorinel
    Hu, Yue
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 195 - 204
  • [5] A monotonicity property of Euler's gamma function
    Adell, Jose A.
    Alzer, Horst
    [J]. PUBLICATIONES MATHEMATICAE-DEBRECEN, 2011, 78 (02): : 443 - 448
  • [6] Monotonicity of some functions involving the gamma and psi functions
    Koumandos, Stamatis
    [J]. MATHEMATICS OF COMPUTATION, 2008, 77 (264) : 2261 - 2275
  • [7] Some Monotonicity Properties on k-Gamma Function and Related Inequalities
    Yıldırım E.
    [J]. International Journal of Applied and Computational Mathematics, 2020, 6 (6)
  • [8] INEQUALITIES AND COMPLETE MONOTONICITY FOR THE GAMMA AND RELATED FUNCTIONS
    Chen, Chao-Ping
    Choi, Junesang
    [J]. COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (04): : 1261 - 1278
  • [9] Absolutely monotonic functions related to Euler's gamma function and Barnes' double and triple gamma function
    Koumandos, Stamatis
    Pedersen, Henrik L.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2011, 163 (01): : 51 - 69
  • [10] Absolutely monotonic functions related to Euler’s gamma function and Barnes’ double and triple gamma function
    Stamatis Koumandos
    Henrik L. Pedersen
    [J]. Monatshefte für Mathematik, 2011, 163 : 51 - 69