Estimation of rare and clustered population mean using stratified adaptive cluster sampling

被引:0
|
作者
Muhammad Nouman Qureshi
Cem Kadilar
Muhammad Hanif
机构
[1] University of Minnesota,School of Statistics
[2] Hacettepe University,Department of Statistics
[3] National College of Business Administration & Economics,Department of Statistics
关键词
Auxiliary information; Clustered populations; Hansen–Hurwitz estimation; Percentage relative efficiency; Stratification;
D O I
暂无
中图分类号
学科分类号
摘要
For many clustered populations, the prior information on an initial stratification exists but the exact pattern of the population concentration may not be predicted. Under this situation, the stratified adaptive cluster sampling (SACS) may provide more efficient estimates than the other conventional sampling designs for the estimation of rare and clustered population parameters. For practical interest, we propose a generalized ratio estimator with the single auxiliary variable under the SACS design. The expressions of approximate bias and mean squared error (MSE) for the proposed estimator are derived. Numerical studies are carried out to compare the performances of the proposed generalized estimator over the usual mean and combined ratio estimators under the conventional stratified random sampling (StRS) using a real population of redwood trees in California and generating an artificial population by the Poisson cluster process. Simulation results show that the proposed class of estimators may provide more efficient results than the other estimators considered in this article for the estimation of highly clumped population.
引用
收藏
页码:151 / 170
页数:19
相关论文
共 50 条
  • [31] Estimation of finite population mean using two auxiliary variables in stratified two-phase sampling
    Shabbir, Javid
    Gupta, Sat
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 1238 - 1256
  • [32] Estimation of Finite Population Mean in Multivariate Stratified Sampling under Cost Function Using Goal Programming
    Ullah, Atta
    Shabbir, Javid
    Hussain, Zawar
    Al-Zahrani, Bander
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [33] Mean estimation using logarithmic estimators in stratified ranked set sampling
    Bhushan S.
    Kumar A.
    Banerjie J.
    [J]. Life Cycle Reliability and Safety Engineering, 2023, 12 (1) : 1 - 9
  • [34] A new estimator of population mean in stratified sampling
    Shabbir, Javid
    Gupta, Sat
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (07) : 1201 - 1209
  • [35] A family of estimators of population mean using auxiliary information in stratified sampling
    Singh, Housila P.
    Vishwakarma, Gajendra K.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2008, 37 (07) : 1038 - 1050
  • [36] On estimating the population mean using auxiliary character in stratified random sampling
    Zaman, Tolga
    Kadilar, Cem
    [J]. JOURNAL OF STATISTICS & MANAGEMENT SYSTEMS, 2020, 23 (08): : 1415 - 1426
  • [37] Sequential adaptive strategies for sampling rare clustered populations
    Fulvia Mecatti
    Charalambos Sismanidis
    Emanuela Furfaro
    Pier Luigi Conti
    [J]. Statistical Methods & Applications, 2023, 32 : 1659 - 1693
  • [38] Sequential adaptive strategies for sampling rare clustered populations
    Mecatti, Fulvia
    Sismanidis, Charalambos
    Furfaro, Emanuela
    Conti, Pier Luigi
    [J]. STATISTICAL METHODS AND APPLICATIONS, 2023, 32 (05): : 1659 - 1693
  • [39] Adaptive survey designs for sampling rare and clustered populations
    Brown, Jennifer A.
    Salehi, Mohammad M.
    Moradi, Mohammad
    Panahbehagh, Bardia
    Smith, David R.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2013, 93 : 108 - 116
  • [40] Efficient estimation of population mean under stratified random sampling with linear cost function
    Mradula
    Yadav, Subhash Kumar
    Varshney, Rahul
    Dube, Madhulika
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (12) : 4364 - 4387