The Sharp Bound of the Fifth Coefficient of Strongly Starlike Functions with Real Coefficients

被引:0
|
作者
Oh Sang Kwon
Adam Lecko
Young Jae Sim
Barbara Śmiarowska
机构
[1] Kyungsung University,Department of Mathematics
[2] University of Warmia and Mazury in Olsztyn,Department of Complex Analysis
关键词
Strongly starlike functions; Carathéodory functions; Schwarz functions; Coefficient estimates; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we found the sharp bound of the fifth coefficient of strongly starlike functions of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} with real coefficients for all α∈(0,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,1]$$\end{document}.
引用
下载
收藏
页码:1719 / 1735
页数:16
相关论文
共 50 条
  • [31] The Sharp Bound of the Third Hankel Determinant for Starlike Functions of Order 1/2
    Rath, Biswajit
    Kumar, K. Sanjay
    Krishna, D. Vamshee
    Lecko, Adam
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2022, 16 (05)
  • [32] Coefficient estimates of negative powers and inverse coefficients for certain starlike functions
    Ali, Md Firoz
    Vasudevarao, A.
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2017, 127 (03): : 449 - 462
  • [33] The Sharp Bound of the Third Hankel Determinant for Starlike Functions of Order 1/2
    Biswajit Rath
    K. Sanjay Kumar
    D. Vamshee Krishna
    Adam Lecko
    Complex Analysis and Operator Theory, 2022, 16
  • [34] On a subclass of strongly starlike functions
    Aouf, Mohamed Kamal
    Dziok, Jacek
    Sokol, Janusz
    APPLIED MATHEMATICS LETTERS, 2011, 24 (01) : 27 - 32
  • [35] ON STRONGLY STARLIKE FUNCTIONS OF ORDER (α, β)
    Nunokawa, Mamoru
    Sokol, Janusz
    MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 431 - 437
  • [36] GENERALIZATIONS OF STRONGLY STARLIKE FUNCTIONS
    Dziok, Jacek
    TAIWANESE JOURNAL OF MATHEMATICS, 2014, 18 (01): : 39 - 51
  • [37] COEFFICIENT INEQUALITY FOR STARLIKE FUNCTIONS
    BARNARD, RW
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 47 (02) : 429 - 430
  • [38] STARLIKE FUNCTIONS WITH A FIXED COEFFICIENT
    ANH, VV
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1989, 39 (01) : 145 - 158
  • [39] COEFFICIENT CONDITIONS FOR STARLIKE FUNCTIONS
    RUSCHEWEYH, S
    GLASGOW MATHEMATICAL JOURNAL, 1987, 29 : 141 - 142
  • [40] The Sharp Bound of the Hankel Determinant of the Third Kind for Starlike Functions of Order 1 / 2
    Adam Lecko
    Young Jae Sim
    Barabara Śmiarowska
    Complex Analysis and Operator Theory, 2019, 13 : 2231 - 2238