Surface deformation and shear flow in ligand mediated cell adhesion

被引:0
|
作者
Sarthok Sircar
Anthony J. Roberts
机构
[1] University of Adelaide,
[2] University of Adelaide,undefined
来源
关键词
Adhesion; Bistability; Binding kinetics; Micro hydrodynamics; Surface deformation; Sticking probability; 92C05;
D O I
暂无
中图分类号
学科分类号
摘要
We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function g∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^*$$\end{document}) between the adhesion phase (when g∗>0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^*>0.5$$\end{document}) and the fragmentation phase (when g∗<0.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^*<0.5$$\end{document}) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of g∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g^*$$\end{document} changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.
引用
收藏
页码:1035 / 1052
页数:17
相关论文
共 50 条
  • [21] Electroactive nanoarrays for biospecific ligand mediated studies of cell adhesion
    Hoover, Diana K.
    Lee, Eun-Ju
    Chan, Eugene W. L.
    Yousaf, Muhammad N.
    CHEMBIOCHEM, 2007, 8 (16) : 1920 - +
  • [22] A tetravalent RGD ligand for integrin-mediated cell adhesion
    Watson, N.
    Duncan, G.
    Annan, W. S.
    van der Walle, C. F.
    JOURNAL OF PHARMACY AND PHARMACOLOGY, 2006, 58 (07) : 959 - 966
  • [23] Correlation of in vitro cell adhesion, local shear flow and cell density
    Joetten, A. M.
    Angermann, S.
    Stamp, M. E. M.
    Breyer, D.
    Strobl, F. G.
    Wixforth, A.
    Westerhausen, C.
    RSC ADVANCES, 2019, 9 (01) : 543 - 551
  • [24] Shear dependent red blood cell adhesion in microscale flow
    Kucukal, Erdem
    Little, Jane A.
    Gurkan, Umut A.
    INTEGRATIVE BIOLOGY, 2018, 10 (04) : 194 - 206
  • [25] SPECIFIC ADHESION OF GLYCOPHORIN LIPOSOMES TO A LECTIN SURFACE IN SHEAR-FLOW
    WATTENBARGER, MR
    GRAVES, DJ
    LAUFFENBURGER, DA
    BIOPHYSICAL JOURNAL, 1990, 57 (04) : 765 - 777
  • [26] Modeling two-dimensional cell deformation in shear flow
    Department of Engineering Mechanics, Shanghai Jiaotong University, Shanghai 200240, China
    不详
    Yingyong Lixue Xuebao, 2008, 4 (547-550):
  • [27] Hollow-fiber assay for ligand-mediated cell adhesion
    Nordon, RE
    Shu, A
    Camacho, F
    Milthorpe, BK
    CYTOMETRY PART A, 2004, 57A (01): : 39 - 44
  • [28] Integrating shear flow and trypsin treatment to assess cell adhesion strength
    Patel, Antra
    Bhavanam, Bhavana
    Keenan, Trevor
    Maruthamuthu, Venkat
    BIOINTERPHASES, 2022, 18 (06)
  • [29] Lateral view flow system for studies of cell adhesion and deformation under flow conditions
    Yuan, J
    Melder, RJ
    Jain, RK
    Munn, LL
    BIOTECHNIQUES, 2001, 30 (02) : 388 - +
  • [30] Effect of adsorbed fibronectin concentration on cell adhesion and deformation under shear on hydrophobic surfaces
    Goldstein, AS
    DiMilla, PA
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, 2002, 59 (04): : 665 - 675