DiagSet: a dataset for prostate cancer histopathological image classification

被引:1
|
作者
Koziarski, Michal [1 ,2 ,3 ]
Cyganek, Boguslaw [1 ,2 ]
Niedziela, Przemyslaw [2 ]
Olborski, Boguslaw [1 ]
Antosz, Zbigniew [1 ]
Zydak, Marcin [1 ]
Kwolek, Bogdan [1 ,2 ]
Wasowicz, Pawel [1 ]
Bukala, Andrzej
Swadzba, Jakub [1 ,2 ,4 ]
Sitkowski, Piotr [1 ]
机构
[1] Diagnostyka Consilio Sp Zoo, Ul Kosynierow Gdynskich 61a, PL-93357 Lodz, Poland
[2] AGH Univ Sci & Technol, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Mila Quebec AI Inst, 6666 Rue St Urbain, Montreal, PQ H2S 3H1, Canada
[4] Andrzej Frycz Modrzewski Krakow Univ, Gustawa Herlinga Grudzinskiego 1, PL-30705 Krakow, Poland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
POSITIVE FORCE FEEDBACK; LEG STIFFNESS; JOINT STIFFNESS; WALKING; ANKLE; LOCOMOTION; MUSCLE; KNEE; BIOMECHANICS; ENERGETICS;
D O I
10.1038/s41598-024-52183-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer diseases constitute one of the most significant societal challenges. In this paper, we introduce a novel histopathological dataset for prostate cancer detection. The proposed dataset, consisting of over 2.6 million tissue patches extracted from 430 fully annotated scans, 4675 scans with assigned binary diagnoses, and 46 scans with diagnoses independently provided by a group of histopathologists can be found at https://github.com/michalkoziarski/DiagSet. Furthermore, we propose a machine learning framework for detection of cancerous tissue regions and prediction of scan-level diagnosis, utilizing thresholding to abstain from the decision in uncertain cases. The proposed approach, composed of ensembles of deep neural networks operating on the histopathological scans at different scales, achieves 94.6% accuracy in patch-level recognition and is compared in a scan-level diagnosis with 9 human histopathologists showing high statistical agreement.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Imbalanced Histopathological Breast Cancer Image Classification with Convolutional Neural Network
    Reza, Md Shamim
    Ma, Jinwen
    [J]. PROCEEDINGS OF 2018 14TH IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP), 2018, : 619 - 624
  • [32] Partially-Independent Framework for Breast Cancer Histopathological Image Classification
    Gupta, Vibha
    Bhavsar, Arnav
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 1123 - 1130
  • [33] MSCI: A multistate dataset for colposcopy image classification of cervical cancer screening
    Yu, Yao
    Ma, Jie
    Zhao, Weidong
    Li, Zhenmin
    Ding, Shuai
    [J]. INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2021, 146
  • [34] Texture CNN for Histopathological Image Classification
    de Matos, Jonathan
    Britto, Alceu de S., Jr.
    de Oliveira, Luiz E. S.
    Koerich, Alessandro L.
    [J]. 2019 IEEE 32ND INTERNATIONAL SYMPOSIUM ON COMPUTER-BASED MEDICAL SYSTEMS (CBMS), 2019, : 580 - 583
  • [35] STRAMPN: Histopathological image dataset for ovarian cancer detection incorporating AI-based methods
    Samridhi Singh
    Malti Kumari Maurya
    Nagendra Pratap Singh
    [J]. Multimedia Tools and Applications, 2024, 83 : 28175 - 28196
  • [36] Breast cancer detection from histopathological image dataset using hybrid convolution neural network
    Sampath, Nalini
    Srinath, N. K.
    [J]. INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2023,
  • [37] STRAMPN: Histopathological image dataset for ovarian cancer detection incorporating AI-based methods
    Singh, Samridhi
    Maurya, Malti Kumari
    Singh, Nagendra Pratap
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 28175 - 28196
  • [38] Breast cancer histopathological image classification using a hybrid deep neural network
    Yan, Rui
    Ren, Fei
    Wang, Zihao
    Wang, Lihua
    Zhang, Tong
    Liu, Yudong
    Rao, Xiaosong
    Zheng, Chunhou
    Zhang, Fa
    [J]. METHODS, 2020, 173 : 52 - 60
  • [39] Chasing a Better Decision Margin for Discriminative Histopathological Breast Cancer Image Classification
    Alirezazadeh, Pendar
    Dornaika, Fadi
    Moujahid, Abdelmalik
    [J]. ELECTRONICS, 2023, 12 (20)
  • [40] Fourier ptychographic and deep learning using breast cancer histopathological image classification
    Thomas, Leena
    Sheeja, M. K.
    [J]. JOURNAL OF BIOPHOTONICS, 2023, 16 (10)