DiagSet: a dataset for prostate cancer histopathological image classification

被引:1
|
作者
Koziarski, Michal [1 ,2 ,3 ]
Cyganek, Boguslaw [1 ,2 ]
Niedziela, Przemyslaw [2 ]
Olborski, Boguslaw [1 ]
Antosz, Zbigniew [1 ]
Zydak, Marcin [1 ]
Kwolek, Bogdan [1 ,2 ]
Wasowicz, Pawel [1 ]
Bukala, Andrzej
Swadzba, Jakub [1 ,2 ,4 ]
Sitkowski, Piotr [1 ]
机构
[1] Diagnostyka Consilio Sp Zoo, Ul Kosynierow Gdynskich 61a, PL-93357 Lodz, Poland
[2] AGH Univ Sci & Technol, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Mila Quebec AI Inst, 6666 Rue St Urbain, Montreal, PQ H2S 3H1, Canada
[4] Andrzej Frycz Modrzewski Krakow Univ, Gustawa Herlinga Grudzinskiego 1, PL-30705 Krakow, Poland
来源
SCIENTIFIC REPORTS | 2024年 / 14卷 / 01期
关键词
POSITIVE FORCE FEEDBACK; LEG STIFFNESS; JOINT STIFFNESS; WALKING; ANKLE; LOCOMOTION; MUSCLE; KNEE; BIOMECHANICS; ENERGETICS;
D O I
10.1038/s41598-024-52183-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cancer diseases constitute one of the most significant societal challenges. In this paper, we introduce a novel histopathological dataset for prostate cancer detection. The proposed dataset, consisting of over 2.6 million tissue patches extracted from 430 fully annotated scans, 4675 scans with assigned binary diagnoses, and 46 scans with diagnoses independently provided by a group of histopathologists can be found at https://github.com/michalkoziarski/DiagSet. Furthermore, we propose a machine learning framework for detection of cancerous tissue regions and prediction of scan-level diagnosis, utilizing thresholding to abstain from the decision in uncertain cases. The proposed approach, composed of ensembles of deep neural networks operating on the histopathological scans at different scales, achieves 94.6% accuracy in patch-level recognition and is compared in a scan-level diagnosis with 9 human histopathologists showing high statistical agreement.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] A Dataset for Breast Cancer Histopathological Image Classification
    Spanhol, Fabio A.
    Oliveira, Luiz S.
    Petitjean, Caroline
    Heutte, Laurent
    [J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2016, 63 (07) : 1455 - 1462
  • [2] Histopathological whole slide image dataset for classification of treatment effectiveness to ovarian cancer
    Ching-Wei Wang
    Cheng-Chang Chang
    Muhammad Adil Khalil
    Yi-Jia Lin
    Yi-An Liou
    Po-Chao Hsu
    Yu-Ching Lee
    Chih-Hung Wang
    Tai-Kuang Chao
    [J]. Scientific Data, 9
  • [3] Histopathological whole slide image dataset for classification of treatment effectiveness to ovarian cancer
    Wang, Ching-Wei
    Chang, Cheng-Chang
    Khalil, Muhammad Adil
    Lin, Yi-Jia
    Liou, Yi-An
    Hsu, Po-Chao
    Lee, Yu-Ching
    Wang, Chih-Hung
    Chao, Tai-Kuang
    [J]. SCIENTIFIC DATA, 2022, 9 (01)
  • [4] RETRACTION: Detection of Breast Cancer Using Histopathological Image Classification Dataset with Deep Learning Techniques
    Reshma, V. K.
    Arya, N.
    Ahmad, S. S.
    [J]. BIOMED RESEARCH INTERNATIONAL, 2024, 2024
  • [5] MIHIC: a multiplex IHC histopathological image classification dataset for lung cancer immune microenvironment quantification
    Wang, Ranran
    Qiu, Yusong
    Wang, Tong
    Wang, Mingkang
    Jin, Shan
    Cong, Fengyu
    Zhang, Yong
    Xu, Hongming
    [J]. FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [6] Breast Cancer Histopathological Image Classification with Adversarial Image Synthesis
    Gheshlaghi, Saba Heidari
    Kan, Chi Nok Enoch
    Ye, Dong Hye
    [J]. 2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 3387 - 3390
  • [7] RETRACTED: Detection of Breast Cancer Using Histopathological Image Classification Dataset with Deep Learning Techniques (Retracted Article)
    Reshma, V. K.
    Arya, Nancy
    Ahmad, Sayed Sayeed
    Wattar, Ihab
    Mekala, Sreenivas
    Joshi, Shubham
    Krah, Daniel
    [J]. BIOMED RESEARCH INTERNATIONAL, 2022, 2022
  • [8] Towards Automatic Classification of Breast Cancer Histopathological Image
    Elelimy, E.
    Mohamed, A. A.
    [J]. PROCEEDINGS OF 2018 13TH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND SYSTEMS (ICCES), 2018, : 299 - 306
  • [9] Breast Cancer Histopathological Image Classification: Is Magnification Important?
    Gupta, Vibha
    Bhavsar, Arnav
    [J]. 2017 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2017, : 769 - 776
  • [10] Deep Features for Breast Cancer Histopathological Image Classification
    Spanhol, Fabio A.
    Cavalin, Paulo R.
    Oliveira, Luiz S.
    Petitjean, Caroline
    Heutte, Laurent
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2017, : 1868 - 1873