A random walk proof of the Erdos-Taylor conjecture

被引:3
|
作者
Rosen J. [1 ]
机构
[1] Department of Mathematics, College of Staten Island, CUNY, Staten Island
关键词
Frequent points; Random walks;
D O I
10.1007/s10998-005-0014-8
中图分类号
学科分类号
摘要
For the simple random walk in ℤ we study those points which are visited an unusually large number of times, and provide a new proof of the Erdos-Taylor Conjecture describing the number of visits to the most visited point. © Akadémiai Kiadó, Budapest.
引用
收藏
页码:223 / 245
页数:22
相关论文
共 50 条
  • [21] A conjecture of Erdos
    Faudree, R
    AMERICAN MATHEMATICAL MONTHLY, 1998, 105 (05): : 451 - 453
  • [22] A proof of Erdos-Fishburn's conjecture for g(6)=13
    Wei, Xianglin
    ELECTRONIC JOURNAL OF COMBINATORICS, 2012, 19 (04):
  • [23] A strengthening of Erdos-Gallai Theorem and proof of Woodall's conjecture
    Li, Binlong
    Ning, Bo
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2021, 146 : 76 - 95
  • [24] ON A CONJECTURE OF ERDOS
    Felix, Adam Tyler
    Murty, M. Ram
    MATHEMATIKA, 2012, 58 (02) : 275 - 289
  • [25] On a conjecture of Erdos
    Pilehrood, T. Hessami
    Pilehrood, K. Hessami
    MATHEMATICAL NOTES, 2008, 83 (1-2) : 281 - 284
  • [26] On a conjecture of Erdos
    Chen, Yong-Gao
    Ding, Yuchen
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 971 - 974
  • [27] A proof of the dynamical version of the Bombieri-Taylor conjecture
    de Oliveira, CR
    JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (09) : 4335 - 4342
  • [28] Proof of Taylor’s Conjecture on Magnetic Helicity Conservation
    Daniel Faraco
    Sauli Lindberg
    Communications in Mathematical Physics, 2020, 373 : 707 - 738
  • [29] On the proof of Taylor's conjecture in multiply connected domains
    Faraco, Daniel
    Lindberg, Sauli
    MacTaggart, David
    Valli, Alberto
    APPLIED MATHEMATICS LETTERS, 2022, 124
  • [30] Proof of Taylor's Conjecture on Magnetic Helicity Conservation
    Faraco, Daniel
    Lindberg, Sauli
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 373 (02) : 707 - 738