Eigenvalue distributions of random unitary matrices

被引:0
|
作者
K. Wieand
机构
[1] Department of Health Studies,
[2] University of Chicago,undefined
[3] 5841 S. Maryland Ave.,undefined
[4] MC 2007,undefined
[5] Chicago,undefined
[6] IL 60637,undefined
[7] USA. e-mail: klwieand@post.harvard.edu,undefined
来源
关键词
Unit Circle; Random Matrix; Unitary Group; Unitary Matrice; Eigenvalue Distribution;
D O I
暂无
中图分类号
学科分类号
摘要
 Let U be an n × n random matrix chosen from Haar measure on the unitary group. For a fixed arc of the unit circle, let X be the number of eigenvalues of M which lie in the specified arc. We study this random variable as the dimension n grows, using the connection between Toeplitz matrices and random unitary matrices, and show that (X -E [X])/(\Var (X))1/2 is asymptotically normally distributed. In addition, we show that for several fixed arcs I1, ..., Im, the corresponding random variables are jointly normal in the large n limit.
引用
收藏
页码:202 / 224
页数:22
相关论文
共 50 条
  • [31] TENSOR PRODUCTS OF RANDOM UNITARY MATRICES
    Tkocz, Tomasz
    Smaczynski, Marek
    Kus, Marek
    Zeitouni, Ofer
    Zyczkowski, Karol
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2012, 1 (04)
  • [32] Composed ensembles of random unitary matrices
    Pozniak, M
    Zyczkowski, K
    Kus, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (03): : 1059 - 1071
  • [33] Random unitary matrices, permutations and Painleve
    Tracy, CA
    Widom, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (03) : 665 - 685
  • [34] Secular determinants of random unitary matrices
    Haake, F
    Kus, M
    Sommers, HJ
    Schomerus, H
    Zyczkowski, K
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (13): : 3641 - 3658
  • [35] Random Unitary Matrices Associated to a Graph
    Kondratiuk, P.
    Zyczkowski, K.
    ACTA PHYSICA POLONICA A, 2013, 124 (06) : 1098 - 1105
  • [36] INVERSE EIGENVALUE PROBLEM FOR RANDOM MATRICES
    GRUNBAUM, FA
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1978, 35 (02) : 268 - 273
  • [37] A note on the eigenvalue density of random matrices
    Kiessling, MKH
    Spohn, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 199 (03) : 683 - 695
  • [38] A Note on the Eigenvalue Density of Random Matrices
    Michael K.-H. Kiessling
    Herbert Spohn
    Communications in Mathematical Physics, 1999, 199 : 683 - 695
  • [39] EIGENVALUE STATISTICS OF RANDOM REAL MATRICES
    LEHMANN, N
    SOMMERS, HJ
    PHYSICAL REVIEW LETTERS, 1991, 67 (08) : 941 - 944
  • [40] EIGENVALUE DISTRIBUTION OF RANDOM OPERATORS AND MATRICES
    PASTUR, L
    ASTERISQUE, 1992, (206) : 445 - 461