Global integrability for minimizers of anisotropic functionals

被引:7
|
作者
Francesco Leonetti
Francesco Siepe
机构
[1] Università di L’Aquila,Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
来源
Manuscripta Mathematica | 2014年 / 144卷
关键词
49N60; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider integral functionals in which the density has growth pi with respect to ∂u∂xi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\frac{\partial u}{\partial x_i}}$$\end{document}, like in ∫Ω∂u∂x1(x)p1+∂u∂x2(x)p2+⋯+∂u∂xn(x)pndx.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\int\limits_{\Omega}\left( \left| \frac{\partial u}{\partial x_1}(x) \right|^{p_1} + \left|\frac{\partial u}{\partial x_2}(x)\right|^{p_2} + \cdots + \left|\frac{\partial u}{\partial x_n}(x) \right|^{p_n} \right) dx.$$\end{document}We show that higher integrability of the boundary datum forces minimizer to be more integrable.
引用
收藏
页码:91 / 98
页数:7
相关论文
共 50 条
  • [41] Local boundedness of quasi-minimizers of integral functionals with variable exponent anisotropic growth and applications
    Fan, Xianling
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2010, 17 (05): : 619 - 637
  • [42] On the Convergence of Minimizers of Singular Perturbation Functionals
    Contreras, Andres
    Lamy, Xavier
    Rodiac, Remy
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2018, 67 (04) : 1665 - 1682
  • [43] REGULARITY FOR MINIMIZERS OF DEGENERATE ELLIPTIC FUNCTIONALS
    Carozza, Menita
    Di Napoli, Antonia Passarelli
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2006, 7 (03) : 375 - 383
  • [44] Partial regularity for ω-minimizers of quasiconvex functionals
    Li, Zhuolin
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2022, 61 (05)
  • [45] Characterization of minimizers of convex regularization functionals
    Poeschl, Christiane
    Scherzer, Otmar
    FRAMES AND OPERATOR THEORY IN ANALYSIS AND SIGNAL PROCESSING, 2008, 451 : 219 - 248
  • [46] Global integrability for solutions to some anisotropic problem with nonstandard growth
    Gao, Hongya
    Jia, Miaomiao
    FORUM MATHEMATICUM, 2018, 30 (05) : 1237 - 1243
  • [47] New Challenges on the Regularity of Minimizers of Functionals
    Ragusa, Maria Alessandra
    Tachikawa, Atsushi
    JOURNAL OF CONVEX ANALYSIS, 2018, 25 (02) : 675 - 690
  • [48] Global integrability for weak solutions to some anisotropic elliptic equations
    Innamorati, Alessandra
    Leonetti, Francesco
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 113 : 430 - 434
  • [49] EXPONENTIAL INTEGRABILITY OF WIENER FUNCTIONALS
    USTUNEL, AS
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (09): : 997 - 1000
  • [50] Higher Integrability for Minimizers of the Mumford–Shah Functional
    Guido De Philippis
    Alessio Figalli
    Archive for Rational Mechanics and Analysis, 2014, 213 : 491 - 502