Lyapunov-type inequalities for mixed non-linear forced differential equations within conformable derivatives

被引:0
|
作者
Thabet Abdeljawad
Ravi P. Agarwal
Jehad Alzabut
Fahd Jarad
Abdullah Özbekler
机构
[1] Prince Sultan University,Department of Mathematics and General Sciences
[2] Texas A&M University–Kingsville,Department of Mathematics
[3] Çankaya University,Department of Mathematics
[4] Atilim University,Department of Mathematics
关键词
Lyapunov inequality; Hartman inequality; Conformable derivative; Green’s function; Boundary value problem; Mixed non-linearities; 34A08; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
We state and prove new generalized Lyapunov-type and Hartman-type inequalities for a conformable boundary value problem of order α∈(1,2]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (1,2]$\end{document} with mixed non-linearities of the form (Tαax)(t)+r1(t)|x(t)|η−1x(t)+r2(t)|x(t)|δ−1x(t)=g(t),t∈(a,b),\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \bigl(\mathbf{T}_{\alpha }^{a} x\bigr) (t)+r_{1}(t) \bigl\vert x(t) \bigr\vert ^{\eta -1}x(t)+r_{2}(t)\bigl\vert x(t) \bigr\vert ^{ \delta -1}x(t)=g(t), \quad t\in (a,b), $$\end{document} satisfying the Dirichlet boundary conditions x(a)=x(b)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(a)=x(b)=0$\end{document}, where r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document}, r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{2}$\end{document}, and g are real-valued integrable functions, and the non-linearities satisfy the conditions 0<η<1<δ<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0<\eta <1<\delta <2$\end{document}. Moreover, Lyapunov-type and Hartman-type inequalities are obtained when the conformable derivative Tαa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{T}_{\alpha }^{a}$\end{document} is replaced by a sequential conformable derivative Tαa∘Tαa\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbf{T}_{\alpha }^{a} \circ \mathbf{T}_{\alpha }^{a}$\end{document}, α∈(1/2,1]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\alpha \in (1/2,1]$\end{document}. The potential functions r1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{1}$\end{document}, r2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$r_{2}$\end{document} as well as the forcing term g require no sign restrictions. The obtained inequalities generalize some existing results in the literature.
引用
收藏
相关论文
共 50 条
  • [21] Lyapunov-type inequalities for ψ-Laplace equations
    Guo, Xu
    Zheng, Jun
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, (45): : 977 - 989
  • [22] A generalized Lyapunov-type inequality in the frame of conformable derivatives
    Thabet Abdeljawad
    Jehad Alzabut
    Fahd Jarad
    Advances in Difference Equations, 2017
  • [23] A generalized Lyapunov-type inequality in the frame of conformable derivatives
    Abdeljawad, Thabet
    Alzabut, Jehad
    Jarad, Fahd
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [24] Lyapunov-type inequalities for third order linear differential equations with two points boundary conditions
    Aktas, Mustafa Fahri
    Cakmak, Devrim
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2019, 48 (01): : 59 - 66
  • [25] LYAPUNOV-TYPE INEQUALITIES FOR CERTAIN HIGHER-ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS
    Liu, Haidong
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2019, 13 (04): : 1159 - 1170
  • [27] Lyapunov-type inequalities for a class of nonlinear higher order differential equations
    Wang, Haofan
    Guo, Xu
    Zheng, Jun
    SECOND INTERNATIONAL CONFERENCE ON PHYSICS, MATHEMATICS AND STATISTICS, 2019, 1324
  • [28] Lyapunov-type inequalities for a class of even-order differential equations
    Zhang, Qi-Ming
    He, Xiaofei
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [29] Lyapunov-type inequalities for partial differential equations with p-Laplacian
    Steglinski, Robert
    FORUM MATHEMATICUM, 2021, 33 (02) : 465 - 476
  • [30] Lyapunov-type Inequalities for Certain Higher Order Fractional Differential Equations
    Peng, You-Hua
    Wang, Xu-Huan
    3RD ANNUAL INTERNATIONAL CONFERENCE ON MODERN EDUCATION AND SOCIAL SCIENCE (MESS 2017), 2017, 135 : 933 - 938