Cloud-based email phishing attack using machine and deep learning algorithm

被引:0
|
作者
Umer Ahmed Butt
Rashid Amin
Hamza Aldabbas
Senthilkumar Mohan
Bader Alouffi
Ali Ahmadian
机构
[1] University of Engineering and Technology,Department of Computer Science
[2] University of Chakwal,Department of Computer Science
[3] Al-Balqa Applied University,Prince Abdullah Bin Ghazi Faculty of Information and Communication Technology
[4] Vellore Institute of Technology,School of Information Technology and Engineering
[5] Taif University,Department of Computer Science, College of Computers and Information Technology
[6] Near East University,Department of Mathematics
来源
关键词
Phishing detection; Extract feature; Label data; Feature selection; Text processing; Machine learning; Long short term memory (LSTM); Support vector machine (SVM) classification; Phishing dataset; [inline-graphic not available: see fulltext]; [inline-graphic not available: see fulltext]; [inline-graphic not available: see fulltext]; [inline-graphic not available: see fulltext]; [inline-graphic not available: see fulltext];
D O I
暂无
中图分类号
学科分类号
摘要
Cloud computing refers to the on-demand availability of personal computer system assets, specifically data storage and processing power, without the client's input. Emails are commonly used to send and receive data for individuals or groups. Financial data, credit reports, and other sensitive data are often sent via the Internet. Phishing is a fraudster's technique used to get sensitive data from users by seeming to come from trusted sources. The sender can persuade you to give secret data by misdirecting in a phished email. The main problem is email phishing attacks while sending and receiving the email. The attacker sends spam data using email and receives your data when you open and read the email. In recent years, it has been a big problem for everyone. This paper uses different legitimate and phishing data sizes, detects new emails, and uses different features and algorithms for classification. A modified dataset is created after measuring the existing approaches. We created a feature extracted comma-separated values (CSV) file and label file, applied the support vector machine (SVM), Naive Bayes (NB), and long short-term memory (LSTM) algorithm. This experimentation considers the recognition of a phished email as a classification issue. According to the comparison and implementation, SVM, NB and LSTM performance is better and more accurate to detect email phishing attacks. The classification of email attacks using SVM, NB, and LSTM classifiers achieve the highest accuracy of 99.62%, 97% and 98%, respectively.
引用
收藏
页码:3043 / 3070
页数:27
相关论文
共 50 条
  • [1] Cloud-based email phishing attack using machine and deep learning algorithm
    Butt, Umer Ahmed
    Amin, Rashid
    Aldabbas, Hamza
    Mohan, Senthilkumar
    Alouffi, Bader
    Ahmadian, Ali
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (03) : 3043 - 3070
  • [2] Detecting Cloud-Based Phishing Attacks by Combining Deep Learning Models
    Jha, Birendra
    Atre, Medha
    Rao, Ashwini
    2022 IEEE 4TH INTERNATIONAL CONFERENCE ON TRUST, PRIVACY AND SECURITY IN INTELLIGENT SYSTEMS, AND APPLICATIONS, TPS-ISA, 2022, : 130 - 139
  • [3] Efficient Email phishing detection using Machine learning
    Abdulraheem, Rana
    Odeh, Ammar
    Al Fayoumi, Mustafa
    Keshta, Ismail
    2022 IEEE 12TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE (CCWC), 2022, : 354 - 358
  • [4] Phishing Email Detection Using Machine Learning Techniques
    Alattas, Hussain
    Aljohar, Fay
    Aljunibi, Hawra
    Alweheibi, Muneera
    Alrashdi, Rawan
    Al Azman, Ghadeer
    Alharby, Abdulrahman
    Nagy, Naya
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (04): : 678 - 685
  • [5] PhishNot: A Cloud-Based Machine-Learning Approach to Phishing URL Detection
    Alani, Mohammed M.
    Tawfik, Hissam
    COMPUTER NETWORKS, 2022, 218
  • [6] Phishing Email Detection Using Machine Learning Techniques
    Alammar, Meaad
    Badawi, Maria Altaib
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2022, 22 (05): : 277 - 283
  • [7] Phishing Email Detection Model Using Deep Learning
    Atawneh, Samer
    Aljehani, Hamzah
    ELECTRONICS, 2023, 12 (20)
  • [8] Detecting Turkish Phishing Attack with Machine Learning Algorithm
    Turhanlar, Melih
    Acarturk, Cengiz
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON WEB INFORMATION SYSTEMS AND TECHNOLOGIES (WEBIST), 2021, : 577 - 584
  • [9] Phishing attack detection using Machine Learning
    Pandiyan S S.
    Selvaraj P.
    Burugari V.K.
    Benadit P J.
    P K.
    Measurement: Sensors, 2022, 24
  • [10] Phishing Attack Detection Using Deep Learning
    Alzahrani, Sabah M.
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (12): : 213 - 218