A mean-field theory for strongly disordered non-frustrated antiferromagnets

被引:0
|
作者
Heidrun Weber
Matthias Vojta
机构
[1] Institut für Theorie der Kondensierten Materie,
[2] Universität Karlsruhe,undefined
[3] 76128 Karlsruhe,undefined
[4] Germany and Institut für Theoretische Physik,undefined
[5] Universität Köln,undefined
关键词
75.50.Ee Antiferromagnetics; 75.30.Hx Magnetic impurity interactions; 75.50.Lk Spin glasses and other random magnets;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by impurity-induced magnetic ordering phenomena in spin-gap materials like TlCuCl3, we develop a mean-field theory for strongly disordered antiferromagnets, designed to capture the broad distribution of coupling constants in the effective model for the impurity degrees of freedom. Based on our results, we argue that in the presence of random magnetic couplings the conventional first-order spin-flop transition of an anisotropic antiferromagnet is split into two transitions at low temperatures, associated with separate order parameters along and perpendicular to the field axis. We demonstrate the existence of either a bicritcal point or a critical endpoint in the temperature–field phase diagram, with the consequence that signatures of the spin flop are more pronounced at elevated temperature.
引用
收藏
页码:185 / 192
页数:7
相关论文
共 50 条
  • [21] Ergodicity breaking in frustrated disordered systems: replicas in mean-field spin-glass models
    Janis, V.
    Kauch, A.
    Klic, A.
    PHASE TRANSITIONS, 2015, 88 (03) : 245 - 263
  • [22] Mean-field models for disordered crystals
    Cances, Eric
    Lahbabi, Salma
    Lewin, Mathieu
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (02): : 241 - 274
  • [23] Dynamical mean-field theory for strongly correlated inhomogeneous multilayered nanostructures
    Freericks, JK
    PHYSICAL REVIEW B, 2004, 70 (19) : 1 - 14
  • [24] Stochastic mean-field theory for the disordered Bose-Hubbard model
    Bissbort, U.
    Hofstetter, W.
    EPL, 2009, 86 (05)
  • [25] Generalized dynamical mean-field theory in the physics of strongly correlated systems
    Kuchinskii, E. Z.
    Nekrasov, I. A.
    Sadovskii, M. V.
    PHYSICS-USPEKHI, 2012, 55 (04) : 325 - 355
  • [26] Strongly correlated superconductivity: A plaquette dynamical mean-field theory study
    Haule, Kristjan
    Kotliar, Gabriel
    PHYSICAL REVIEW B, 2007, 76 (10)
  • [27] Strongly correlated materials: Insights from dynamical mean-field theory
    Kotliar, G
    Vollhardt, D
    PHYSICS TODAY, 2004, 57 (03) : 53 - 59
  • [28] Embedding approach for dynamical mean-field theory of strongly correlated heterostructures
    Ishida, H.
    Liebsch, A.
    PHYSICAL REVIEW B, 2009, 79 (04)
  • [29] MONTE-CARLO MEAN-FIELD THEORY AND FRUSTRATED SYSTEMS IN 2 AND 3 DIMENSIONS
    NETZ, RR
    BERKER, AN
    PHYSICAL REVIEW LETTERS, 1991, 66 (03) : 377 - 380
  • [30] Statistical dynamical mean-field description of strongly correlated disordered electron-phonon systems
    Bronold, FX
    Fehske, H
    ACTA PHYSICA POLONICA B, 2003, 34 (02): : 851 - 856