Well-posedness of a higher-order Schrödinger–Poisson–Slater system

被引:0
|
作者
Saber Trabelsi
机构
[1] King Fahd University of Petroleum and Minerals,Department of Mathematics & Statistics
来源
关键词
Nonlinear Schrödinger equations; Nonlinear Schrödinger–Poisson equations; 35Q55; 35Q41;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we show the global well-posedness of a higher-order nonlinear Schrödinger equation. Specifically, we consider a system of infinitely many coupled higher-order Schrödinger–Poisson–Slater equations with a self-consistent Coulomb potential. We prove the existence and uniqueness global in time of solutions in L2(R3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}( \mathbb{R}^{3})$\end{document} and in the energy space.
引用
收藏
相关论文
共 50 条