Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation

被引:0
|
作者
Sergei Grudinin
Maria Kadukova
Andreas Eisenbarth
Simon Marillet
Frédéric Cazals
机构
[1] University of Grenoble Alpes,
[2] LJK,undefined
[3] CNRS,undefined
[4] LJK,undefined
[5] Inria,undefined
[6] Université Côte d’Azur and Inria,undefined
[7] Virology and Molecular Immunology,undefined
[8] INRA,undefined
关键词
Protein-ligand docking; Machine learning; Scoring function; Ridge regression; Parameter estimation;
D O I
暂无
中图分类号
学科分类号
摘要
The 2015 D3R Grand Challenge provided an opportunity to test our new model for the binding free energy of small molecules, as well as to assess our protocol to predict binding poses for protein-ligand complexes. Our pose predictions were ranked 3–9 for the HSP90 dataset, depending on the assessment metric. For the MAP4K dataset the ranks are very dispersed and equal to 2–35, depending on the assessment metric, which does not provide any insight into the accuracy of the method. The main success of our pose prediction protocol was the re-scoring stage using the recently developed Convex-PL potential. We make a thorough analysis of our docking predictions made with AutoDock Vina and discuss the effect of the choice of rigid receptor templates, the number of flexible residues in the binding pocket, the binding pocket size, and the benefits of re-scoring. However, the main challenge was to predict experimentally determined binding affinities for two blind test sets. Our affinity prediction model consisted of two terms, a pairwise-additive enthalpy, and a non pairwise-additive entropy. We trained the free parameters of the model with a regularized regression using affinity and structural data from the PDBBind database. Our model performed very well on the training set, however, failed on the two test sets. We explain the drawback and pitfalls of our model, in particular in terms of relative coverage of the test set by the training set and missed dynamical properties from crystal structures, and discuss different routes to improve it.
引用
收藏
页码:791 / 804
页数:13
相关论文
共 48 条
  • [1] Predicting binding poses and affinities for protein - ligand complexes in the 2015 D3R Grand Challenge using a physical model with a statistical parameter estimation
    Grudinin, Sergei
    Kadukova, Maria
    Eisenbarth, Andreas
    Marillet, Simon
    Cazals, Frederic
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2016, 30 (09) : 791 - 804
  • [2] D3R Grand Challenge 3: blind prediction of protein–ligand poses and affinity rankings
    Zied Gaieb
    Conor D. Parks
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    W. Patrick Walters
    Millard H. Lambert
    Neysa Nevins
    Scott D. Bembenek
    Michael K. Ameriks
    Tara Mirzadegan
    Stephen K. Burley
    Rommie E. Amaro
    Michael K. Gilson
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1 - 18
  • [3] Predicting binding poses and affinity ranking in D3R Grand Challenge using PL-PatchSurfer2.0
    Woong-Hee Shin
    Daisuke Kihara
    Journal of Computer-Aided Molecular Design, 2019, 33 : 1083 - 1094
  • [4] Predicting binding poses and affinity ranking in D3R Grand Challenge using PL-PatchSurfer2.0
    Shin, Woong-Hee
    Kihara, Daisuke
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (12) : 1083 - 1094
  • [5] D3R Grand Challenge 3: blind prediction of protein-ligand poses and affinity rankings
    Gaieb, Zied
    Parks, Conor D.
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, W. Patrick
    Lambert, Millard H.
    Nevins, Neysa
    Bembenek, Scott D.
    Ameriks, Michael K.
    Mirzadegan, Tara
    Burley, Stephen K.
    Amaro, Rommie E.
    Gilson, Michael K.
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2019, 33 (01) : 1 - 18
  • [6] D3R Grand Challenge 4: Blind prediction of protein-ligand poses and affinity predictions
    Gaieb, Zied
    Parks, Conor
    Chiu, Michael
    Yang, Huanwang
    Shao, Chenghua
    Walters, Patrick
    Lewis, Richard
    Bembenek, Scott
    Burley, Stephen
    Amaro, Rommie
    Gilson, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2019, 258
  • [7] D3R grand challenge 2015: Evaluation of protein–ligand pose and affinity predictions
    Symon Gathiaka
    Shuai Liu
    Michael Chiu
    Huanwang Yang
    Jeanne A. Stuckey
    You Na Kang
    Jim Delproposto
    Ginger Kubish
    James B. Dunbar
    Heather A. Carlson
    Stephen K. Burley
    W. Patrick Walters
    Rommie E. Amaro
    Victoria A. Feher
    Michael K. Gilson
    Journal of Computer-Aided Molecular Design, 2016, 30 : 651 - 668
  • [8] D3R Grand Challenge 2: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies
    Zied Gaieb
    Shuai Liu
    Symon Gathiaka
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    Victoria A. Feher
    W. Patrick Walters
    Bernd Kuhn
    Markus G. Rudolph
    Stephen K. Burley
    Michael K. Gilson
    Rommie E. Amaro
    Journal of Computer-Aided Molecular Design, 2018, 32 : 1 - 20
  • [9] D3R grand challenge 4: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies
    Conor D. Parks
    Zied Gaieb
    Michael Chiu
    Huanwang Yang
    Chenghua Shao
    W. Patrick Walters
    Johanna M. Jansen
    Georgia McGaughey
    Richard A. Lewis
    Scott D. Bembenek
    Michael K. Ameriks
    Tara Mirzadegan
    Stephen K. Burley
    Rommie E. Amaro
    Michael K. Gilson
    Journal of Computer-Aided Molecular Design, 2020, 34 : 99 - 119
  • [10] D3R 2015 grand challenge: Assessment of prediction of binding poses and affinity rankings of blinded unpublished datasets
    Gathiaka, Symon
    Chiu, Michael
    Grethe, Jeffrey
    Amaro, Rommie
    Feher, Victoria
    Gilson, Michael
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251