Ca2+-ATPase;
protein kinase C;
erythrocyte;
cerebellum;
calmodulin;
Ca2+-ATPase (EC 3. 6. 1. 38);
protein kinase C (2.7.1.37);
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We have purified Ca2+-ATPase from synaptosomal membranes (SM)1 from ratcerebellum by calmodulin affinity chromatography. The enzyme was identifiedas plasma membrane Ca2+-ATPase by its interaction with calmodulin andmonoclonal antibodies produced against red blood cell (RBC) Ca2+-ATPase, andby thapsigargin insensitivity. The purpose of the study was to establishwhether two regulators of the RBC Ca2+-ATPase, calmodulin and protein kinaseC (PKC), affect the Ca2+-ATPase isolated from excitable cells and whethertheir effects are comparable to those on the RBC Ca2+-ATPase. We found thatcalmodulin and PKC activated both enzymes. There were significantquantitative differences in the phosphorylation and activation of the SMversus RBC Ca2+-ATPase. The steady-state Ca2+-ATPase activity of SMCa2+-ATPase was approximately 3 fold lower and significantly less stimulatedby calmodulin. The initial rate of PKC catalyzed phosphorylation (in thepresence of 12-myristate 13-acetate phorbol) was approximately two timesslower for SM enzyme. While phosphorylation of RBC Ca2+-ATPase approachedmaximum level at around 5 min, comparable level of phosphorylation of SMCa2+-ATPase was observed only after 30 min. The PKC-catalyzedphosphorylation resulted in a statistically significant increase inCa2+-ATPase activity of up to 20-40%, higher in the SM Ca2+-ATPase.The differences may be associated with diversities in Ca2+-ATPase functionin erythrocytes and neuronal cells and different isoforms composition.