Observation of an antiferromagnetic quantum critical point in high-purity LaNiO3

被引:0
|
作者
Changjiang Liu
Vincent F. C. Humbert
Terence M. Bretz-Sullivan
Gensheng Wang
Deshun Hong
Friederike Wrobel
Jianjie Zhang
Jason D. Hoffman
John E. Pearson
J. Samuel Jiang
Clarence Chang
Alexey Suslov
Nadya Mason
M. R. Norman
Anand Bhattacharya
机构
[1] Argonne National Laboratory,Materials Science Division
[2] University of Illinois at Urbana-Champaign,Department of Physics
[3] Argonne National Laboratory,High Energy Physics Division
[4] Harvard University,Department of Physics
[5] National High Magnetic Field Laboratory,undefined
来源
Nature Communications | / 11卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Amongst the rare-earth perovskite nickelates, LaNiO3 (LNO) is an exception. While the former have insulating and antiferromagnetic ground states, LNO remains metallic and non-magnetic down to the lowest temperatures. It is believed that LNO is a strange metal, on the verge of an antiferromagnetic instability. Our work suggests that LNO is a quantum critical metal, close to an antiferromagnetic quantum critical point (QCP). The QCP behavior in LNO is manifested in epitaxial thin films with unprecedented high purities. We find that the temperature and magnetic field dependences of the resistivity of LNO at low temperatures are consistent with scatterings of charge carriers from weak disorder and quantum fluctuations of an antiferromagnetic nature. Furthermore, we find that the introduction of a small concentration of magnetic impurities qualitatively changes the magnetotransport properties of LNO, resembling that found in some heavy-fermion Kondo lattice systems in the vicinity of an antiferromagnetic QCP.
引用
收藏
相关论文
共 50 条
  • [31] INTERACTION OF POINT DEFECTS WITH DISLOCATIONS IN HIGH-PURITY QUENCHED ALUMINUM
    GINDIN, IA
    NEKLYUDO.IM
    BOBONETS, II
    SOVIET PHYSICS SOLID STATE,USSR, 1968, 9 (10): : 2333 - +
  • [32] High density dry etching of (Ba,Sr)TiO3 and LaNiO3
    Lee, KP
    Jung, KB
    Srivastava, A
    Kumar, D
    Singh, RK
    Pearton, SJ
    FERROELECTRIC THIN FILMS VIII, 2000, 596 : 91 - 96
  • [33] Flexible LaNiO3 film with both high electrical conductivity and mechanical robustness
    Zhang, Shuzhi
    Lv, Panpan
    Zhan, Hang
    Xin, Le
    Wang, Jia
    Li, Ruihang
    Cui, Yuxin
    Pan, Tong
    Li, Cuncheng
    Ren, Luchao
    Zhang, Mingwei
    CERAMICS INTERNATIONAL, 2024, 50 (20) : 39830 - 39836
  • [34] Determining critical trace elements in high-purity phosphoric acid
    Aleksejczyk, RA
    Gibilisco, D
    MICRO, 1997, 15 (08): : 39 - 42
  • [35] Observation of High-Purity Single Photons Hopping between Optical Cavities
    Makino, Kenzo
    Yoshikawa, Jun-ichi
    Hashimoto, Yosuke
    van Loock, Peter
    Furusawa, Akira
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [36] The photovoltaic conversion enhancement of CuAlO2/LaNiO3 quantum dots/SnO2 transparent pn junction via dual functional perovskite LaNiO3 QDs
    Zhang, Pengjie
    Zhang, Yujie
    Feng, Shouzhe
    Cao, Jun
    Wang, Jingjing
    Zheng, Yingying
    Shi, Lei
    Pan, Jiaqi
    Li, Chaorong
    CERAMICS INTERNATIONAL, 2023, 49 (11) : 19174 - 19181
  • [37] High surface area LaNiO3 electrodes for oxygen electrocatalysis in alkaline media
    Soares, C. O.
    Carvalho, M. D.
    Melo Jorge, M. E.
    Gomes, A.
    Silva, R. A.
    Rangel, C. M.
    da Silva Pereira, M. I.
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2012, 42 (05) : 325 - 332
  • [38] High surface area LaNiO3 electrodes for oxygen electrocatalysis in alkaline media
    C. O. Soares
    M. D. Carvalho
    M. E. Melo Jorge
    A. Gomes
    R. A. Silva
    C. M. Rangel
    M. I. da Silva Pereira
    Journal of Applied Electrochemistry, 2012, 42 : 325 - 332
  • [39] OBSERVATION OF TWIN FAULTS IN SPUTTER-DEPOSITED HIGH-PURITY NICKEL
    WANG, R
    DAHLGREN, SD
    JOURNAL OF MATERIALS SCIENCE, 1975, 10 (08) : 1456 - 1458
  • [40] Exploring the Role of High-Purity Laser Light in Quantum Tech
    Thom, Joseph
    Hempler, Nils
    Malcolm, Graeme
    Squared, M.
    Photonics Spectra, 2020, 54 (12) : 39 - 43