Solutions of the buoyancy-drag equation with a time-dependent acceleration

被引:0
|
作者
Serge E. Bouquet
Robert Conte
Vincent Kelsch
Fabien Louvet
机构
[1] CEA/DAM/DIF,Laboratoire univers et théories (LUTH)
[2] Bruyères-le-Châtel,Centre de mathématiques et de leurs applications
[3] Observatoire de Paris,Department of Mathematics
[4] Université de recherche Paris sciences et lettres - PSL Research University,undefined
[5] CNRS,undefined
[6] Université Paris-Diderot,undefined
[7] Sorbonne Paris Cité,undefined
[8] École normale supérieure de Cachan,undefined
[9] CNRS,undefined
[10] Université Paris-Saclay,undefined
[11] The University of Hong Kong,undefined
关键词
Buoyancy-drag equation; Lie point symmetries; Abel equation; 22E99; 34Mxx (see also 30Dxx, 32G34); 76Fxx (see also 37-XX, 60Gxx, 60Jxx);
D O I
暂无
中图分类号
学科分类号
摘要
We perform the analytic study of the buoyancy-drag equation with a time-dependent acceleration γ(t) by two methods. We first determine its equivalence class under the point transformations of Roger Liouville, and thus for some values of γ(t) define a time-dependent Hamiltonian from which the buoyancy-drag equation can be derived. We then determine the Lie point symmetries of the buoyancy-drag equation, which only exist for values of γ(t) including the previous ones, plus additional classes of accelerations for which the equation is reducible to an Abel equation. This allows us to exhibit two régimes for the asymptotic (large time t) solution of the buoyancy-drag equation. It is shown that they describe a mixing zone driven by the Rayleigh—Taylor instability and the Richtmyer—Meshkov instability, respectively.
引用
收藏
页码:3 / 17
页数:14
相关论文
共 50 条