Solutions of the buoyancy-drag equation with a time-dependent acceleration

被引:0
|
作者
Serge E. Bouquet
Robert Conte
Vincent Kelsch
Fabien Louvet
机构
[1] CEA/DAM/DIF,Laboratoire univers et théories (LUTH)
[2] Bruyères-le-Châtel,Centre de mathématiques et de leurs applications
[3] Observatoire de Paris,Department of Mathematics
[4] Université de recherche Paris sciences et lettres - PSL Research University,undefined
[5] CNRS,undefined
[6] Université Paris-Diderot,undefined
[7] Sorbonne Paris Cité,undefined
[8] École normale supérieure de Cachan,undefined
[9] CNRS,undefined
[10] Université Paris-Saclay,undefined
[11] The University of Hong Kong,undefined
关键词
Buoyancy-drag equation; Lie point symmetries; Abel equation; 22E99; 34Mxx (see also 30Dxx, 32G34); 76Fxx (see also 37-XX, 60Gxx, 60Jxx);
D O I
暂无
中图分类号
学科分类号
摘要
We perform the analytic study of the buoyancy-drag equation with a time-dependent acceleration γ(t) by two methods. We first determine its equivalence class under the point transformations of Roger Liouville, and thus for some values of γ(t) define a time-dependent Hamiltonian from which the buoyancy-drag equation can be derived. We then determine the Lie point symmetries of the buoyancy-drag equation, which only exist for values of γ(t) including the previous ones, plus additional classes of accelerations for which the equation is reducible to an Abel equation. This allows us to exhibit two régimes for the asymptotic (large time t) solution of the buoyancy-drag equation. It is shown that they describe a mixing zone driven by the Rayleigh—Taylor instability and the Richtmyer—Meshkov instability, respectively.
引用
收藏
页码:3 / 17
页数:14
相关论文
共 50 条
  • [1] Solutions of the buoyancy-drag equation with a time-dependent acceleration
    Bouquet, Serge E.
    Conte, Robert
    Kelsch, Vincent
    Louvet, Fabien
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2017, 24 : 3 - 17
  • [2] Analytical study of the buoyancy-drag equation
    Bouquet, Serge
    Gandeboeuf, Pierre
    Pailhories, Pierre
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2007, 30 (16) : 2027 - 2035
  • [3] Solutions to Buoyancy-Drag Equation for Dynamical Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Zone
    Cao, Y. G.
    Chow, W. K.
    Fong, N. K.
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2011, 56 (04) : 751 - 755
  • [4] Solutions to Buoyancy-Drag Equation for Dynamical Evolution of Rayleigh-Taylor and Richtmyer-Meshkov Mixing Zone
    W.K.Chow
    N.K.Fong
    Communications in Theoretical Physics, 2011, 56 (10) : 751 - 755
  • [5] Early Time Modifications to the Buoyancy-Drag Model for Richtmyer-Meshkov Mixing
    Youngs, David L.
    Thornber, Ben
    JOURNAL OF FLUIDS ENGINEERING-TRANSACTIONS OF THE ASME, 2020, 142 (12):
  • [6] On the time-dependent solutions of the Schrodinger equation
    Palma, Alejandro
    Pedraza, I.
    TOPICS IN THE THEORY OF CHEMICAL AND PHYSICAL SYSTEMS, 2007, 16 : 147 - +
  • [7] Buoyancy-drag mix model obtained by multifluid interpenetration equations
    Cheng, BL
    Scannapieco, AJ
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [8] A class of exact solutions of the time-dependent Schrodinger equation with time-dependent mass
    Schulze-Halberg, A
    MODERN PHYSICS LETTERS A, 2001, 16 (40) : 2557 - 2566
  • [9] COMPARISON OF SOLUTIONS TO TIME-DEPENDENT SCHRODINGER EQUATION
    CHANG, CM
    JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (08): : 3445 - 3447
  • [10] SOLUTIONS TO THE TIME-DEPENDENT SCHRODINGER-EQUATION
    HARTLEY, JG
    RAY, JR
    PHYSICAL REVIEW A, 1982, 25 (04): : 2388 - 2390