On Brunn–Minkowski Type Inequalities and Overdetermined Problem for p-Capacity

被引:0
|
作者
Lewen Ji
机构
[1] East China University of Technology,Department of Mathematics
[2] Shanghai University,Department of Mathematics
来源
Results in Mathematics | 2020年 / 75卷
关键词
-Capacitary difference; -capacitary overdetermined problem; -difference body; 31B15; 52A20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we mainly study some properties of p-capacity. Firstly, the p-capacitary difference Brunn–Minkowski and Minkowski inequalities are established. Secondly, we propose the p-capacitary overdetermined problem and prove the Serrin type symmetry result for the problem. Finally, we also make some considerations for the polar set of p-difference body for capacity.
引用
收藏
相关论文
共 50 条
  • [31] On Brunn-Minkowski-Type Inequalities for Polar Bodies
    Hernandez Cifre, Maria A.
    Yepes Nicolas, Jesus
    JOURNAL OF GEOMETRIC ANALYSIS, 2016, 26 (01) : 143 - 155
  • [32] Brunn-Minkowski type inequalities for Lp Blaschke-Minkowski homomorphisms
    Chen, Feixiang
    Leng, Gangsong
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (12): : 6034 - 6040
  • [33] A unified treatment for Lp Brunn-Minkowski type inequalities
    Zou, Du
    Xiong, Ge
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2018, 26 (02) : 435 - 460
  • [34] BRUNN-MINKOWSKI TYPE INEQUALITIES FOR Lp MOMENT BODIES
    Zhu, Baocheng
    Li, Ni
    Zhou, Jiazu
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (02) : 391 - 398
  • [35] ON Lp-BRUNN-MINKOWSKI TYPE INEQUALITIES OF CONVEX BODIES
    Lu, Fenghong
    Leng, Gangsong
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2007, 13 (01): : 167 - 176
  • [36] Brunn-Minkowski type inequalities for the lattice point enumerator
    Iglesias, David
    Nicolas, Jesus Yepes
    Zvavitch, Artem
    ADVANCES IN MATHEMATICS, 2020, 370
  • [37] On dual Brunn-Minkowski inequalities
    Zhao, CJ
    Pecaric, J
    Leng, GS
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2005, 8 (02): : 357 - 363
  • [38] Orlicz–Brunn–Minkowski inequalities for Blaschke–Minkowski homomorphisms
    Feixiang Chen
    Gangsong Leng
    Geometriae Dedicata, 2017, 187 : 137 - 149
  • [39] GAUSSIAN BRUNN-MINKOWSKI INEQUALITIES
    Gardner, Richard J.
    Zvavitch, Artem
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 362 (10) : 5333 - 5353
  • [40] ON THE VARIATIONAL p-CAPACITY PROBLEM IN THE PLANE
    Xiao, Jie
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (03) : 959 - 968