共 50 条
Genome-Wide Analysis of Repetitive Elements in Papaya
被引:6
|作者:
Niranjan Nagarajan
Rafael Navajas-Pérez
Mihai Pop
Maqsudul Alam
Ray Ming
Andrew H. Paterson
Steven L. Salzberg
机构:
[1] University of Maryland,Center for Bioinformatics and Computational Biology
[2] University of Georgia,Plant Genome Mapping Laboratory
[3] University of Hawaii,Department of Microbiology
[4] University of Illinois at Urbana-Champaign,Department of Plant Biology
关键词:
Papaya genome;
Transposable elements;
Tandem repeats;
Satellite DNA;
High copy-number genes;
Repeatome;
D O I:
10.1007/s12042-008-9015-0
中图分类号:
学科分类号:
摘要:
Papaya (Carica papaya L.) is an important fruit crop cultivated in tropical and subtropical regions worldwide. A first draft of its genome sequence has been recently released. Together with Arabidopsis, rice, poplar, grapevine and other genomes in the pipeline, it represents a good opportunity to gain insight into the organization of plant genomes. Here we report a detailed analysis of repetitive elements in the papaya genome, including transposable elements (TEs), tandemly-arrayed sequences, and high copy number genes. These repetitive sequences account for ∼56% of the papaya genome with TEs being the most abundant at 52%, tandem repeats at 1.3% and high copy number genes at 3%. Most common types of TEs are represented in the papaya genome with retrotransposons being the dominant class, accounting for 40% of the genome. The most prevalent retrotransposons are Ty3-gypsy (27.8%) and Ty1-copia (5.5%). Among the tandem repeats, microsatellites are the most abundant in number, but represent only 0.19% of the genome. Minisatellites and satellites are less abundant, but represent 0.68% and 0.43% of the genome, respectively, due to greater repeat length. Despite an overall smaller gene repertoire in papaya than many other angiosperms, a significant fraction of genes (>2%) are present in large gene families with copy number greater than 20. This repeat database clarified a major part of the papaya genome organization and partly explained the lower gene repertoire in papaya than in Arabidopsis.
引用
收藏
页码:191 / 201
页数:10
相关论文