Danube River Water Data Modelling by Multivariate Data Analysis

被引:0
|
作者
Vasil Simeonov
Costel Sarbu
Desire-Luc Massart
Stefan Tsakovski
机构
[1] Faculty of Chemistry,
[2] University of Sofia “St. Kl. Okhridski”,undefined
[3] 1126 Sofia,undefined
[4] J. Bourchier Blvd. 1,undefined
[5] Bulgaria,undefined
[6] Faculty of Chemistry and Chemical Engineering,undefined
[7] “Babes-Bolyai” University,undefined
[8] Jarani Janos 11,undefined
[9] RO-3400 Cluj-Napoca,undefined
[10] Romania,undefined
[11] Vrije Universiteit Brussel,undefined
[12] Pharmaceutical Institute,undefined
[13] Pharmaceutical and Biomedical Analysis,undefined
[14] 1090 Brussels,undefined
[15] Laarbeeklaan 103,undefined
[16] Belgium,undefined
来源
Microchimica Acta | 2001年 / 137卷
关键词
Key words: River water quality; principal components analysis; principal components regression.;
D O I
暂无
中图分类号
学科分类号
摘要
 A data set (48×19) consisting of Danube river water analytical data collected at Galati site, Romania, during a four-year period has been treated by principal components analysis (PCA). The PCA indicated that seven latent factors (“hardness”, “biochemical”, “waste inlets”, “turbidity”, “acidity”, “soil extracts” and “organic wastes”) are responsible for the data structure and explain over 80 % of the total variance of the system. Its complexity is further proved by the application of multiple linear regression analysis on the absolute principal components scores (APCS) where the contribution of each natural or anthropogenic sources in the factor formation is shown. The apportioning makes clear that each variable participates to a different extent to each source and, in this way, no pure natural or pure anthropogenic influence could be determined. No specific seasonality for the variables in consideration is found.
引用
收藏
页码:243 / 248
页数:5
相关论文
共 50 条
  • [31] Latent trajectory modelling of multivariate binary data
    Beath, Ken J.
    Heller, Gillian Z.
    STATISTICAL MODELLING, 2009, 9 (03) : 199 - 213
  • [32] Multivariate exploratory data analysis for large databases: An application to modelling firms' innovation using CIS data
    Bou, Juan C.
    Satorra, Albert
    BRQ-BUSINESS RESEARCH QUARTERLY, 2019, 22 (04) : 275 - 293
  • [33] Multivariate data analysis:: quo vadis?: II.: Levels of data-modelling objectives and possibilities
    Höskuldsson, A
    Esbensen, KH
    JOURNAL OF CHEMOMETRICS, 2003, 17 (01) : 45 - 52
  • [34] Multivariate data analysis:: quo vadis?: I.: Object-oriented data modelling (OODM)
    Esbensen, KH
    Höskuldsson, A
    JOURNAL OF CHEMOMETRICS, 2003, 17 (01) : 34 - 44
  • [35] Modelling Lifetime Data with Multivariate Tweedie Distribution
    Nor, Siti Rohani Mohd
    Yusof, Fadhilah
    Bahar, Arifah
    3RD ISM INTERNATIONAL STATISTICAL CONFERENCE 2016 (ISM III): BRINGING PROFESSIONALISM AND PRESTIGE IN STATISTICS, 2017, 1842
  • [36] Multivariate modelling of infectious disease surveillance data
    Paul, M.
    Held, L.
    Toschke, A. M.
    STATISTICS IN MEDICINE, 2008, 27 (29) : 6250 - 6267
  • [37] Linear manifold modelling of multivariate functional data
    Chiou, Jeng-Min
    Mueller, Hans-Georg
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2014, 76 (03) : 605 - 626
  • [38] ANALYSIS OF MULTIVARIATE DATA - MULTIVARIATE-ANALYSIS OF REGRESSION
    MAGER, PP
    MAGER, H
    BIOMETRISCHE ZEITSCHRIFT, 1975, 17 (05): : 325 - 328
  • [39] Lower Danube Water Quality Quantified through WQI and Multivariate Analysis
    Iticescu, Catalina
    Georgescu, Lucian P.
    Murariu, Gabriel
    Topa, Catalina
    Timofti, Mihaela
    Pintilie, Violeta
    Arseni, Maxim
    WATER, 2019, 11 (06)
  • [40] Statistical analysis of the results of multivariate ordination as exemplified by data on river benthic communities
    V. K. Shitikov
    T. D. Zinchenko
    E. V. Abrosimova
    Russian Journal of Ecology, 2012, 43 : 137 - 141