Isomorphic limit ultrapowers for infinitary logic

被引:0
|
作者
Saharon Shelah
机构
[1] The Hebrew University of Jerusalem,Einstein Institute of Mathematics, Edmond J. Safra Campus
[2] The State University of New Jersey,Department of Mathematics, Hill Center
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The logic Lθ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{L}}_\theta ^1$$\end{document} was introduced in [She12]; it is the maximal logic below Lθ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{L}}_{\theta, \theta}}$$\end{document} in which a well ordering is not definable. We investigate it for θ a compact cardinal. We prove that it satisfies several parallels of classical theorems on first order logic, strengthening the thesis that it is a natural logic. In particular, two models are Lθ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{L}}_\theta ^1$$\end{document}-equivalent iff for some ω-sequence of θ-complete ultrafilters, the iterated ultrapowers by it of those two models are isomorphic.
引用
收藏
页码:21 / 46
页数:25
相关论文
共 50 条
  • [21] An Infinitary Model of Linear Logic
    Grellois, Charles
    Mellies, Paul-Andre
    FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2015), 2015, 9034 : 41 - 55
  • [22] A note on infinitary continuous logic
    Baratella, Stefano
    MATHEMATICAL LOGIC QUARTERLY, 2015, 61 (06) : 448 - 457
  • [23] INFINITARY LOGIC AND ADMISSIBLE SETS
    BARWISE, J
    JOURNAL OF SYMBOLIC LOGIC, 1969, 34 (02) : 226 - &
  • [24] An infinitary propositional probability logic
    Stefano Baratella
    Archive for Mathematical Logic, 2023, 62 : 291 - 320
  • [25] INFINITARY LOGIC AND TOPOLOGICAL HOMEOMORPHISMS
    MCKEE, TA
    ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1975, 21 (05): : 405 - 408
  • [26] Infinitary Action Logic with Multiplexing
    Stepan L. Kuznetsov
    Stanislav O. Speranski
    Studia Logica, 2023, 111 : 251 - 280
  • [27] COMPLETENESS THEOREM FOR INFINITARY LOGIC
    MANSFIELD, R
    JOURNAL OF SYMBOLIC LOGIC, 1972, 37 (01) : 31 - +
  • [28] COMPLETENESS THEOREM FOR INFINITARY LOGIC
    MANSFIELD, R
    JOURNAL OF SYMBOLIC LOGIC, 1971, 36 (04) : 709 - +
  • [29] Infinitary Action Logic with Multiplexing
    Kuznetsov, Stepan L.
    Speranski, Stanislav O.
    STUDIA LOGICA, 2023, 111 (02) : 251 - 280
  • [30] Infinitary equilibrium logic and strongly equivalent logic programs
    Harrison, Amelia
    Lifschitz, Vladimir
    Pearce, David
    Valverde, Agustin
    ARTIFICIAL INTELLIGENCE, 2017, 246 : 22 - 33