共 50 条
Isomorphic limit ultrapowers for infinitary logic
被引:0
|作者:
Saharon Shelah
机构:
[1] The Hebrew University of Jerusalem,Einstein Institute of Mathematics, Edmond J. Safra Campus
[2] The State University of New Jersey,Department of Mathematics, Hill Center
来源:
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The logic Lθ1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{L}}_\theta ^1$$\end{document} was introduced in [She12]; it is the maximal logic below Lθ,θ\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathbb{L}}_{\theta, \theta}}$$\end{document} in which a well ordering is not definable. We investigate it for θ a compact cardinal. We prove that it satisfies several parallels of classical theorems on first order logic, strengthening the thesis that it is a natural logic. In particular, two models are Lθ1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathbb{L}}_\theta ^1$$\end{document}-equivalent iff for some ω-sequence of θ-complete ultrafilters, the iterated ultrapowers by it of those two models are isomorphic.
引用
收藏
页码:21 / 46
页数:25
相关论文