Isomorphic limit ultrapowers for infinitary logic

被引:0
|
作者
Saharon Shelah
机构
[1] The Hebrew University of Jerusalem,Einstein Institute of Mathematics, Edmond J. Safra Campus
[2] The State University of New Jersey,Department of Mathematics, Hill Center
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The logic Lθ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{L}}_\theta ^1$$\end{document} was introduced in [She12]; it is the maximal logic below Lθ,θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb{L}}_{\theta, \theta}}$$\end{document} in which a well ordering is not definable. We investigate it for θ a compact cardinal. We prove that it satisfies several parallels of classical theorems on first order logic, strengthening the thesis that it is a natural logic. In particular, two models are Lθ1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{L}}_\theta ^1$$\end{document}-equivalent iff for some ω-sequence of θ-complete ultrafilters, the iterated ultrapowers by it of those two models are isomorphic.
引用
收藏
页码:21 / 46
页数:25
相关论文
共 50 条