Randomly weighted sums of subexponential random variables with application to capital allocation

被引:0
|
作者
Qihe Tang
Zhongyi Yuan
机构
[1] University of Iowa,Department of Statistics and Actuarial Science
[2] Pennsylvania State University,Department of Risk Management
来源
Extremes | 2014年 / 17卷
关键词
Asymptotics; Capital allocation; Matuszewska indices; Randomly weighted sum; Subexponentiality; Primary—62E20; Secondary—60G70;
D O I
暂无
中图分类号
学科分类号
摘要
We are interested in the tail behavior of the randomly weighted sum ∑i=1n𝜃iXi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sum _{i=1}^{n}\theta _{i}X_{i}$\end{document}, in which the primary random variables X1, …, Xn are real valued, independent and subexponentially distributed, while the random weights 𝜃1, …, 𝜃n are nonnegative and arbitrarily dependent, but independent of X1, …, Xn. For various important cases, we prove that the tail probability of ∑i=1n𝜃iXi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum _{i=1}^{n}\theta _{i}X_{i}$\end{document} is asymptotically equivalent to the sum of the tail probabilities of 𝜃1X1, …, 𝜃nXn, which complies with the principle of a single big jump. An application to capital allocation is proposed.
引用
收藏
页码:467 / 493
页数:26
相关论文
共 50 条
  • [31] Weighted sums of subexponential random variables and asymptotic dependence between returns on reinsurance equities
    Geluk, JL
    De Vries, CG
    INSURANCE MATHEMATICS & ECONOMICS, 2006, 38 (01): : 39 - 56
  • [32] Asymptotics for Sums of Random Variables with Local Subexponential Behaviour
    Søren Asmussen
    Serguei Foss
    Dmitry Korshunov
    Journal of Theoretical Probability, 2003, 16 : 489 - 518
  • [33] Tail Behavior of Sums and Maxima of Sums of Dependent Subexponential Random Variables
    Yang, Yang
    Wang, Kaiyong
    Leipus, Remigijus
    Siaulys, Jonas
    ACTA APPLICANDAE MATHEMATICAE, 2011, 114 (03) : 219 - 231
  • [34] Tail Behavior of Sums and Maxima of Sums of Dependent Subexponential Random Variables
    Yang Yang
    Kaiyong Wang
    Remigijus Leipus
    Jonas Šiaulys
    Acta Applicandae Mathematicae, 2011, 114 : 219 - 231
  • [35] Asymptotics for sums of random variables with local subexponential behaviour
    Asmussen, S
    Foss, S
    Korshunov, D
    JOURNAL OF THEORETICAL PROBABILITY, 2003, 16 (02) : 489 - 518
  • [36] Sums of dependent nonnegative random variables with subexponential tails
    Ko, Bangwon
    Tang, Qihe
    JOURNAL OF APPLIED PROBABILITY, 2008, 45 (01) : 85 - 94
  • [37] STRONG LAWS FOR RANDOMLY WEIGHTED SUMS OF RANDOM VARIABLES AND APPLICATIONS IN THE BOOTSTRAP AND RANDOM DESIGN REGRESSION
    Chen, Pingyan
    Zhang, Tao
    Sung, Soo Hak
    STATISTICA SINICA, 2019, 29 (04) : 1739 - 1749
  • [38] Complete convergence for randomly weighted sums of random variables and its application in linear-time-invariant systems
    Lang, Junjun
    He, Tianyun
    Yu, Zhiqiang
    Wu, Yi
    Wang, Xuejun
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2023, 52 (03) : 868 - 883
  • [39] Asymptotic Tail Probabilities of Sums of Dependent Subexponential Random Variables
    Geluk, Jaap
    Tang, Qihe
    JOURNAL OF THEORETICAL PROBABILITY, 2009, 22 (04) : 871 - 882
  • [40] Asymptotic tail probability of randomly weighted sums of dependent random variables with dominated variation
    Yang, Hai-zhong
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2011, 27 (02): : 277 - 280