Randomly weighted sums of subexponential random variables with application to capital allocation

被引:0
|
作者
Qihe Tang
Zhongyi Yuan
机构
[1] University of Iowa,Department of Statistics and Actuarial Science
[2] Pennsylvania State University,Department of Risk Management
来源
Extremes | 2014年 / 17卷
关键词
Asymptotics; Capital allocation; Matuszewska indices; Randomly weighted sum; Subexponentiality; Primary—62E20; Secondary—60G70;
D O I
暂无
中图分类号
学科分类号
摘要
We are interested in the tail behavior of the randomly weighted sum ∑i=1n𝜃iXi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sum _{i=1}^{n}\theta _{i}X_{i}$\end{document}, in which the primary random variables X1, …, Xn are real valued, independent and subexponentially distributed, while the random weights 𝜃1, …, 𝜃n are nonnegative and arbitrarily dependent, but independent of X1, …, Xn. For various important cases, we prove that the tail probability of ∑i=1n𝜃iXi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\sum _{i=1}^{n}\theta _{i}X_{i}$\end{document} is asymptotically equivalent to the sum of the tail probabilities of 𝜃1X1, …, 𝜃nXn, which complies with the principle of a single big jump. An application to capital allocation is proposed.
引用
收藏
页码:467 / 493
页数:26
相关论文
共 50 条