Deep-learning based detection of vessel occlusions on CT-angiography in patients with suspected acute ischemic stroke

被引:5
|
作者
Brugnara, Gianluca [1 ,2 ]
Baumgartner, Michael [3 ,4 ,5 ]
Scholze, Edwin David [1 ,2 ]
Deike-Hofmann, Katerina [6 ,7 ]
Kades, Klaus [3 ,5 ]
Scherer, Jonas [3 ]
Denner, Stefan [3 ,8 ]
Meredig, Hagen [1 ,2 ]
Rastogi, Aditya [1 ,2 ]
Mahmutoglu, Mustafa Ahmed [1 ,2 ]
Ulfert, Christian [1 ]
Neuberger, Ulf [1 ]
Schoenenberger, Silvia [9 ]
Schlamp, Kai [10 ]
Bendella, Zeynep [6 ]
Pinetz, Thomas
Schmeel, Carsten [6 ,7 ]
Wick, Wolfgang [9 ]
Ringleb, Peter A. [9 ]
Floca, Ralf [3 ]
Moehlenbruch, Markus [1 ]
Radbruch, Alexander [6 ,7 ]
Bendszus, Martin [1 ]
Maier-Hein, Klaus [3 ]
Vollmuth, Philipp [1 ,2 ,3 ]
机构
[1] Heidelberg Univ Hosp, Dept Neuroradiol, Heidelberg, Germany
[2] Heidelberg Univ Hosp, Dept Neuroradiol, Div Computat Neuroimaging, Heidelberg, Germany
[3] German Canc Res Ctr, Div Med Image Comp, Heidelberg, Germany
[4] Helmholtz Imaging, Heidelberg, Germany
[5] Heidelberg Univ, Fac Math & Comp Sci, Heidelberg, Germany
[6] Bonn Univ Hosp, Dept Neuroradiol, Bonn, Germany
[7] German Ctr Neurodegenerat Dis DZNE, Clin Neuroimaging Grp, Bonn, Germany
[8] Heidelberg Univ, Fac Med, Heidelberg, Germany
[9] Heidelberg Univ Hosp, Neurol Clin, Heidelberg, Germany
[10] Thoraxklin Univ Heidelberg, Dept Diagnost & Intervent Radiol Nucl Med, Heidelberg, Germany
关键词
THROMBECTOMY;
D O I
10.1038/s41467-023-40564-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Swift diagnosis and treatment play a decisive role in the clinical outcome of patients with acute ischemic stroke (AIS), and computer-aided diagnosis (CAD) systems can accelerate the underlying diagnostic processes. Here, we developed an artificial neural network (ANN) which allows automated detection of abnormal vessel findings without any a-priori restrictions and in <2 minutes. Pseudo-prospective external validation was performed in consecutive patients with suspected AIS from 4 different hospitals during a 6-month timeframe and demonstrated high sensitivity (= 87%) and negative predictive value (= 93%). Benchmarking against two CE- and FDA-approved software solutions showed significantly higher performance for our ANN with improvements of 25-45% for sensitivity and 4-11% for NPV (p = 0.003 each). We provide an imaging platform () for online processing of medical imaging data with the developed ANN, including provisions for data crowdsourcing, which will allow continuous refinements and serve as a blueprint to build robust and generalizable AI algorithms.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Quantitative Collateral Grading on CT Angiography in Patients with Acute Ischemic Stroke
    Boers, Anna M. M.
    Barros, Renan Sales
    Jansen, Ivo G. H.
    Slump, Cornelis H.
    Dippel, Diederik W. J.
    van der Lugt, Aad
    van Zwam, Wim H.
    Roos, Yvo B. W. E. M.
    van Oostenbrugge, Robert J.
    Majoie, Charles B. L. M.
    Marquering, Henk A.
    MOLECULAR IMAGING, RECONSTRUCTION AND ANALYSIS OF MOVING BODY ORGANS, AND STROKE IMAGING AND TREATMENT, 2017, 10555 : 176 - 184
  • [22] Outcomes Of Mechanical Thrombectomy in acute ischemic stroke patients with Large Vessel Occlusions and Low NIHSS
    Kamal, Haris
    Ahmad, Muhammad Khaleeq
    Shallwani, Hussain
    Chin, Felix
    Siddiqui, Adnan
    Sawyer, Robert
    Vakharia, Kunal
    Shakir, Hakeem
    Levy, Elad
    NEUROLOGY, 2018, 90
  • [23] Plasma Neurofilament Light Chain Predicts Large Vessel Occlusions in Patients with Acute Ischemic Stroke
    Wang, Zhiqiang
    Wang, Rongyu
    Yang, Dongdong
    CEREBROVASCULAR DISEASES, 2023, 52 : 53 - 53
  • [24] Deep learning-assisted diagnosis of large vessel occlusion in acute ischemic stroke based on four-dimensional computed tomography angiography
    Peng, Yuling
    Liu, Jiayang
    Yao, Rui
    Wu, Jiajing
    Li, Jing
    Dai, Linquan
    Gu, Sirun
    Yao, Yunzhuo
    Li, Yongmei
    Chen, Shanxiong
    Wang, Jingjie
    FRONTIERS IN NEUROSCIENCE, 2024, 18
  • [25] Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke
    Chin-Fu Liu
    Johnny Hsu
    Xin Xu
    Sandhya Ramachandran
    Victor Wang
    Michael I. Miller
    Argye E. Hillis
    Andreia V. Faria
    Communications Medicine, 1
  • [26] Deep learning-based detection and segmentation of diffusion abnormalities in acute ischemic stroke
    Liu, Chin-Fu
    Hsu, Johnny
    Xu, Xin
    Ramachandran, Sandhya
    Wang, Victor
    Miller, Michael I.
    Hillis, Argye E.
    Faria, Andreia V.
    COMMUNICATIONS MEDICINE, 2021, 1 (01):
  • [27] Outcome of acute ischemic stroke with absent opacification of the cervical internal carotid artery at CT-angiography after endovascular treatment
    Comai, Alessio
    Casalboni, Chiara
    Vingiani, Vincenzo
    Bonatti, Matteo
    Franchini, Enrica
    Dall'Ora, Elisa
    Noumsi Guensom, Ghislain
    Lombardo, Fabio
    Federica, Ferro
    Petralia, Benedetto
    NEURORADIOLOGY JOURNAL, 2025,
  • [28] Topic: AS08 Stroke Neuroimaging AUTOMATED ARTIFICIAL INTELLIGENCE-BASED DETECTION AND LOCATION SPECIFICATION OF LARGE VESSEL OCCLUSION ON CT ANGIOGRAPHY IN ACUTE ISCHEMIC STROKE
    Bruggeman, A.
    Koopman, M.
    Soomro, J.
    Small, J.
    Yoo, A.
    Marquering, H.
    Emmer, B.
    INTERNATIONAL JOURNAL OF STROKE, 2021, 16 (2_SUPPL) : 61 - 62
  • [29] Value of Quantitative Collateral Scoring on CT Angiography in Patients with Acute Ischemic Stroke
    Boers, A. M. M.
    Sales Barros, R.
    Jansen, I. G. H.
    Berkhemer, O. A.
    Beenen, L. F. M.
    Menon, B. K.
    Dippel, D. W. J.
    van der Lugt, A.
    van Zwam, W. H.
    Roos, Y. B. W. E. M.
    van Oostenbrugge, R. J.
    Slump, C. H.
    Majoie, C. B. L. M.
    Marquering, H. A.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (06) : 1074 - 1082
  • [30] Accuracy of transcranial duplex sonography, compared with CT angiography, for detection of intracranial arterial occlusions in acute stroke
    Martinez-Sanchez, P.
    Garcia-Pastor, A.
    Arenillas-Lara, J. F.
    Ayo-Martin, O.
    Ruiz-Ares, G.
    Diaz-Otero, F.
    Calleja-Sanz, A. I.
    Garcia-Garcia, J.
    Frutos-Martinez, R.
    Sobrino-Garcia, P.
    Villar-Garcia, M.
    Fuentes, B.
    Vazquez-Alen, P.
    Marcos-Naranjo, E.
    Sanz-Cuesta, B. E.
    Chavarria-Cano, B.
    Collado-Jimenez, R. M.
    Diez-Tejedor, E.
    INTERNATIONAL JOURNAL OF STROKE, 2015, 10 : 344 - 344