Resampling-Based Inference Methods for Comparing Two Coefficients Alpha

被引:0
|
作者
Markus Pauly
Maria Umlauft
Ali Ünlü
机构
[1] Ulm University,Institute of Statistics
[2] Technical University of Munich,undefined
来源
Psychometrika | 2018年 / 83卷
关键词
bootstrap; coefficient alpha; Cronbach’s alpha; non-normality; permutation; reliability; resampling-based inference;
D O I
暂无
中图分类号
学科分类号
摘要
The two-sample problem for Cronbach’s coefficient αC\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _C$$\end{document}, as an estimate of test or composite score reliability, has attracted little attention compared to the extensive treatment of the one-sample case. It is necessary to compare the reliability of a test for different subgroups, for different tests or the short and long forms of a test. In this paper, we study statistical procedures of comparing two coefficients αC,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{C,1}$$\end{document} and αC,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha _{C,2}$$\end{document}. The null hypothesis of interest is H0:αC,1=αC,2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H_0 : \alpha _{C,1} = \alpha _{C,2}$$\end{document}, which we test against one-or two-sided alternatives. For this purpose, resampling-based permutation and bootstrap tests are proposed for two-group multivariate non-normal models under the general asymptotically distribution-free (ADF) setting. These statistical tests ensure a better control of the type-I error, in finite or very small sample sizes, when the state-of-affairs ADF large-sample test may fail to properly attain the nominal significance level. By proper choice of a studentized test statistic, the resampling tests are modified in order to be valid asymptotically even in non-exchangeable data frameworks. Moreover, extensions of this approach to other designs and reliability measures are discussed as well. Finally, the usefulness of the proposed resampling-based testing strategies is demonstrated in an extensive simulation study and illustrated by real data applications.
引用
收藏
页码:203 / 222
页数:19
相关论文
共 50 条
  • [21] Resampling-based multiple testing methods with covariate adjustment: Application to investigation of antiretroviral drug susceptibility
    Yang, Yang
    DeGruttola, Victor
    BIOMETRICS, 2008, 64 (02) : 329 - 336
  • [22] Resampling-Based Approaches to Study Variation in Morphological Modularity
    Fruciano, Carmelo
    Franchini, Paolo
    Meyer, Axel
    PLOS ONE, 2013, 8 (07):
  • [23] Resampling-based variance estimation for labour force surveys
    Canty, AJ
    Davison, AC
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1999, 48 : 379 - 391
  • [24] Bias in resampling-based thresholding of statistical maps in fMRI
    Friman, O
    Westin, CF
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2004, PT 2, PROCEEDINGS, 2004, 3217 : 711 - 718
  • [25] Choice of a null distribution in resampling-based multiple testing
    Pollard, KS
    van der Laan, MJ
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2004, 125 (1-2) : 85 - 100
  • [26] Monte Carlo evaluation of resampling-based hypothesis tests
    Boos, DD
    Zhang, J
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2000, 95 (450) : 486 - 492
  • [27] Resampling-based multiple testing for microarray data analysis
    Youngchao Ge
    Sandrine Dudoit
    Terence P. Speed
    Test, 2003, 12 : 1 - 77
  • [28] Resampling-based multiple testing for microarray data analysis
    Ge, YC
    Dudoit, S
    Speed, TP
    TEST, 2003, 12 (01) : 1 - 77
  • [29] Resampling-based software for estimating optimal sample size
    Confalonieri, R.
    Acutis, M.
    Bellocchi, G.
    Genovese, G.
    ENVIRONMENTAL MODELLING & SOFTWARE, 2007, 22 (12) : 1796 - 1800
  • [30] Assessment of Person Fit Using Resampling-Based Approaches
    Sinharay, Sandip
    JOURNAL OF EDUCATIONAL MEASUREMENT, 2016, 53 (01) : 63 - 85