Offline music symbol recognition using Daisy feature and quantum Grey wolf optimization based feature selection

被引:0
|
作者
Samir Malakar
Manosij Ghosh
Agneet Chaterjee
Showmik Bhowmik
Ram Sarkar
机构
[1] Asutosh College,Department of Computer Science
[2] Jadavpur University,Department of Computer Science and Engineering
[3] Ghani Khan Choudhury Institute of Engineering and Technology,Department of Computer Science and Engineering
来源
关键词
Music symbol recognition; Daisy descriptor; Quantum Grey wolf optimization; Feature selection;
D O I
暂无
中图分类号
学科分类号
摘要
Handwritten music symbol recognition is considered by the research fraternity as a critical research problem. It becomes more critical when the symbols are collected from handwritten music sheets in offline mode. Most of the research findings, available in the literature, have tried to recognize the said symbols using various shape based features. But this approach limits system performance when we dealt with lookalike symbols such as half note, eight note and quarter note. To encounter this, in the present work we have used a texture based feature descriptor, called Daisy, for the said purpose. Though Daisy descriptor yields reasonably good recognition accuracy, but it generates a high dimensional feature vector. Hence, in this work, Quantum concept inspired Grey Wolf Optimization, named as QGWO, has been applied to select optimal feature subset from this high dimensional feature vector. We have applied the proposed method on six different standard music symbol datasets that include HOMUS, Capitan_score_uniform, Capitan_score_non-uniform, Fornés, Rebelo_real and Rebelo_synthetic datasets. On these datasets we have achieved recognition accuracies 93.07%, 99.22%, 99.20%, 99.49% and 100.00% respectively with 39.63%, 49.75%, 42.50%, 67.62%, 54.37% and 71.25% of actual feature dimension (i.e., 800) respectively. Additionally, we have compared our results with some state-of-the-art methods along with two recent deep learning based models, and it has been found that the present approach outperforms those.
引用
收藏
页码:32011 / 32036
页数:25
相关论文
共 50 条
  • [41] Hybrid Dipper Throated and Grey Wolf Optimization for Feature Selection Applied to Life Benchmark Datasets
    Khafaga, Doaa Sami
    El-kenawy, El-Sayed M.
    Karim, Faten Khalid
    Abotaleb, Mostafa
    Ibrahim, Abdelhameed
    Abdelhamid, Abdelaziz A.
    Elsheweikh, D. L.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (02): : 4531 - 4545
  • [42] An adaptively balanced grey wolf optimization algorithm for feature selection on high-dimensional classification
    Wang, Jing
    Lin, Dakun
    Zhang, Yuanzi
    Huang, Shiguo
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 114
  • [43] Feature selection of BOF steelmaking process data by using an improved grey wolf optimizer
    Chen, Zong-xin
    Liu, Hui
    Qi, Long
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2022, 29 (08) : 1205 - 1223
  • [44] Feature selection of BOF steelmaking process data by using an improved grey wolf optimizer
    Zong-xin Chen
    Hui Liu
    Long Qi
    Journal of Iron and Steel Research International, 2022, 29 : 1205 - 1223
  • [45] Feature Selection for DNN-HMM Based Mongolian Offline Handwriting Recognition
    Wu, Huijuan
    Fan, Daoerji
    2019 9TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST2019), 2019, : 141 - 145
  • [46] Reinforcement learning-based comprehensive learning grey wolf optimizer for feature selection
    Hu, Zhengpeng
    Yu, Xiaobing
    APPLIED SOFT COMPUTING, 2023, 149
  • [47] A novel feature selection framework based on grey wolf optimizer for mammogram image analysis
    Sathiyabhama, B.
    Kumar, S. Udhaya
    Jayanthi, J.
    Sathiya, T.
    Ilavarasi, A. K.
    Yuvarajan, V
    Gopikrishna, Konga
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (21): : 14583 - 14602
  • [48] A novel feature selection framework based on grey wolf optimizer for mammogram image analysis
    B. Sathiyabhama
    S. Udhaya Kumar
    J. Jayanthi
    T. Sathiya
    A. K. Ilavarasi
    V. Yuvarajan
    Konga Gopikrishna
    Neural Computing and Applications, 2021, 33 : 14583 - 14602
  • [49] A novel feature selection framework based on grey wolf optimizer for mammogram image analysis
    Sathiyabhama, B.
    Kumar, S. Udhaya
    Jayanthi, J.
    Sathiya, T.
    Ilavarasi, A.K.
    Yuvarajan, V.
    Gopikrishna, Konga
    Neural Computing and Applications, 2021, 33 (21) : 14583 - 14602
  • [50] A Novel Hybrid Grey Wolf Optimization Algorithm Using Two-Phase Crossover Approach for Feature Selection and Classification
    Nimbiwal, Mukesh
    Vashishtha, Jyoti
    COMPUTACION Y SISTEMAS, 2021, 25 (04): : 793 - 801