An upper bound for the second Neumann eigenvalue on Riemannian manifolds

被引:0
|
作者
Kui Wang
机构
[1] Soochow University,School of Mathematical Sciences
来源
Geometriae Dedicata | 2019年 / 201卷
关键词
The second Neumann eigenvalue; Reimannian manifolds; Szegö–Weinberger inequality; 35P10;
D O I
暂无
中图分类号
学科分类号
摘要
The Szegö–Weinberger inequality asserts that the second Neumann eigenvalue μ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _2$$\end{document} of Laplace operator on a bounded domain in Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} is bounded from above by that of a ball of the same volume. In this note, we prove an upper bound for μ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu _2$$\end{document} on domains in Riemannian manifolds, which can be viewed as a Sezgö–Weinberger type inequality.
引用
收藏
页码:317 / 323
页数:6
相关论文
共 50 条