Combinatory use of distinct single-cell RNA-seq analytical platforms reveals the heterogeneous transcriptome response

被引:0
|
作者
Yukie Kashima
Ayako Suzuki
Ying Liu
Masahito Hosokawa
Hiroko Matsunaga
Masataka Shirai
Kohji Arikawa
Sumio Sugano
Takashi Kohno
Haruko Takeyama
Katsuya Tsuchihara
Yutaka Suzuki
机构
[1] The University of Tokyo,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences
[2] Kashiwa,Division of Translational Genomics, The Exploratory Oncology Research and Clinical Trial Center
[3] National Cancer Center,Department of Life Science and Medical Bioscience
[4] Kashiwa,Hitachi Ltd., Research & Development Group
[5] Waseda University,Division of Genome Biology, National Cancer Center Research Institute
[6] Shinjuku-ku,undefined
[7] Kokubunji-shi,undefined
[8] Chuo-ku,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Single-cell RNA-seq is a powerful tool for revealing heterogeneity in cancer cells. However, each of the current single-cell RNA-seq platforms has inherent advantages and disadvantages. Here, we show that combining the different single-cell RNA-seq platforms can be an effective approach to obtaining complete information about expression differences and a sufficient cellular population to understand transcriptional heterogeneity in cancers. We demonstrate that it is possible to estimate missing expression information. We further demonstrate that even in the cases where precise information for an individual gene cannot be inferred, the activity of given transcriptional modules can be analyzed. Interestingly, we found that two distinct transcriptional modules, one associated with the Aurora kinase gene and the other with the DUSP gene, are aberrantly regulated in a minor population of cells and may thus contribute to the possible emergence of dormancy or eventual drug resistance within the population.
引用
收藏
相关论文
共 50 条
  • [21] Correlation Imputation for Single-Cell RNA-seq
    Gan, Luqin
    Vinci, Giuseppe
    Allen, Genevera I.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2022, 29 (05) : 465 - 482
  • [22] PRECISION AND ACCURACY IN SINGLE-CELL RNA-SEQ
    Dai, Rujia
    Zhang, Ming
    Chu, Tianyao
    Kopp, Richard
    Zhang, Chunling
    Liu, Kefu
    Wang, Yue
    Wang, Xusheng
    Chen, Chao
    Liu, Chunyu
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2024, 87 : 21 - 21
  • [23] Single-cell RNA-seq—now with protein
    Vesna Todorovic
    Nature Methods, 2017, 14 : 1028 - 1029
  • [24] Single-cell RNA-seq reveals distinct dynamic behavior of sex chromosomes during early human embryogenesis
    Zhou, Qing
    Wang, Taifu
    Leng, Lizhi
    Zheng, Wei
    Huang, Jinrong
    Fang, Fang
    Yang, Ling
    Chen, Fang
    Lin, Ge
    Wang, Wen-Jing
    Kristiansen, Karsten
    MOLECULAR REPRODUCTION AND DEVELOPMENT, 2019, 86 (07) : 871 - 882
  • [25] Single-cell RNA-seq reveals early heterogeneity during aging in yeast
    Wang, Jincheng
    Sang, Yuchen
    Jin, Shengxian
    Wang, Xuezheng
    Azad, Gajendra Kumar
    McCormick, Mark A.
    Kennedy, Brian K.
    Li, Qing
    Wang, Jianbin
    Zhang, Xiannian
    Zhang, Yi
    Huang, Yanyi
    AGING CELL, 2022, 21 (11)
  • [26] Single-cell RNA-seq reveals distinct dynamic behavior of sex chromosomes during human early embryogenesis
    Zhou, Q.
    Wang, T. F.
    Sun, J. H.
    Yang, X.
    Xing, Y. R.
    Chen, H. X.
    Xu, J. J.
    Wang, W. J.
    HUMAN REPRODUCTION, 2018, 33 : 126 - 127
  • [27] Single-cell RNA-seq reveals distinct dynamic behavior of sex chromosomes during human early embryogenesis
    Zhou, Q.
    Wang, T. F.
    Huang, J. R.
    Yang, L.
    Xu, F. P.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2018, 26 : 624 - 625
  • [28] Single-cell RNA-seq reveals intratumoral heterogeneity in osteosarcoma patients: A review
    Thomas, Dylan D.
    Lacinski, Ryan A.
    Lindsey, Brock A.
    JOURNAL OF BONE ONCOLOGY, 2023, 39
  • [29] Single-cell RNA-seq reveals hidden transcriptional variation in malaria parasites
    Reid, Adam J.
    Talman, Arthur M.
    Bennett, Hayley M.
    Gomes, Ana R.
    Sanders, Mandy J.
    Illingwoth, Christopher J. R.
    Billker, Oliver
    Berriman, Matthew
    Lawniczak, Mara K. N.
    ELIFE, 2018, 7
  • [30] Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    Alex K. Shalek
    Rahul Satija
    Joe Shuga
    John J. Trombetta
    Dave Gennert
    Diana Lu
    Peilin Chen
    Rona S. Gertner
    Jellert T. Gaublomme
    Nir Yosef
    Schraga Schwartz
    Brian Fowler
    Suzanne Weaver
    Jing Wang
    Xiaohui Wang
    Ruihua Ding
    Raktima Raychowdhury
    Nir Friedman
    Nir Hacohen
    Hongkun Park
    Andrew P. May
    Aviv Regev
    Nature, 2014, 510 : 363 - 369